Formal definitions:

$$
\begin{aligned}
& \Theta(g(n))=\left\{f(n) \mid \exists c_{1}, c_{2}, n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\} \\
& O(g(n))=\left\{f(n) \mid \exists c, n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq f(n) \leq c g(n)\right\} \\
& \Omega(g(n))=\left\{f(n) \mid \exists c, n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq c g(n) \leq f(n)\right\} \\
& o(g(n))=\left\{f(n) \mid \forall c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq f(n)<c g(n)\right\} \\
& \omega(g(n))=\left\{f(n) \mid \forall c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq c g(n)<f(n)\right\}
\end{aligned}
$$

If $f(n)=O(g(n))$ and $\lg (g(n)) \geq 1$ and $f(n) \geq 1$ for sufficiently large n, then $\lg (f(n))=O(\lg (g(n))$.

Scratch work: We need a d such that

$$
\begin{aligned}
\lg c+\lg g(n) & \leq d \lg g(n) \\
d & \geq \frac{\lg c}{\lg g(n)}+\frac{\lg g(n)}{\lg g(n)} \\
& \geq \lg c+1 \\
(\lg c+1) \lg g(n) & =\lg c \cdot \lg g(n)+\lg g(n)
\end{aligned}
$$

Proof. Suppose $f(n)=O(g(n))$. Then there exist c, n_{0} such that for all $n>n_{0}, f(n) \leq c \cdot g(n)$. Then

$$
\begin{aligned}
\lg f(n) & \leq \lg c g(n) & & \text { since } \lg \text { is increasing } \\
& \leq \lg c+\lg g(n) & & \text { by } \log \text { property } \\
& \leq \lg c \cdot \lg g(n)+\lg g(n) & & \text { Since } \lg g(n) \geq 1 \\
& \leq(\lg c+1) \cdot \lg g(n) & &
\end{aligned}
$$

Thus for $n>n_{0}, \lg (f(n)) \leq(\lg c+1) \lg (g(n))$.

