Proof of Horner's rule loop invariant
$$\left(y = \sum_{k=0}^{n-(i+1)} a_{k+i+1}x^k\right)$$
:
Init. After 0 iterations, $y = 0$, $i = n$ by assignment. So

$$\sum_{k=0}^{n-(i+1)} a_{k+i+1} = \sum_{k=0}^{-1} a_{k+i+1} x^k = 0 = y$$

Maint. Now, suppose this holds true after N iterations, that is

$$y_{old} = \sum_{k=0}^{n-(i_{old}+1)} a_{k+i_{old}+1} x^k$$

where y_{old} and i_{old} are y and i after N iterations. Likewise, let y_{new} and i_{new} be the values after N + 1 iterations.

By assignment $i_{new} = i_{old} - 1$. Then

$$y_{new} = a_{i_{old}} + x \cdot y_{old}$$
 by assignment

$$= a_{i_{old}} + x \cdot \sum_{k=0}^{n-(i_{old}+1)} a_{k+i_{old}+1} x^{k}$$

$$= a_{i_{new-1}} + x \cdot \sum_{k=0}^{n-(i_{new}+2)} a_{k+i_{new}} x^{k}$$
 by substitution

$$= a_{i_{new-1}} + \sum_{k=0}^{n-(i_{new}+2)} a_{k+i_{new}} x^{k+1}$$
 by distribution

$$= a_{i_{new-1}} + \sum_{k=1}^{n-(i_{new}+1)} a_{k+i_{new}+1} x^{k}$$
 by change of variables

$$= a_{0+i_{new-1}} x^{0} + \sum_{k=1}^{n-(i_{new}+1)} a_{k+i_{new}+1} x^{k}$$

$$= \sum_{k=0}^{n-(i_{new}+1)} a_{k+i_{new}+1} x^{k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Formal definition of big-Theta:

 $\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2, n_0 \in \mathbb{N} \text{ such that } \forall n \ge n_0, 0 \le c_1g(n) \le f(n) \le c_2g(n)\}$

$$g(n) = \frac{1}{2}n^2 - 3n = \Theta(n^2).$$
Proof. Let $c_1 = \frac{1}{14}$, $c_2 = \frac{1}{2}$ and $n_0 = 7$. Suppose $n > 7$. Then

$$\frac{1}{14} = \frac{1}{2} - \frac{3}{7} < \frac{1}{2}$$

$$\frac{1}{14} \le \frac{1}{2} - \frac{3}{n} \le \frac{1}{2}$$

$$\frac{n^2}{14} \le \frac{1}{2}n^2 - 3n \le \frac{n^2}{2}$$

$$c_1n^2 \le g(n) \le c_2n^2$$
Therefore $g(n) = \Theta(n^2)$ by definition. \Box

・ロト・日本・日本・日本・日本・日本

Theorem 3.1. For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Proof. Suppose $f = \Theta(g(n))$. Then, by definition of Θ , there exist constants c_1 , c_2 , and n_0 such that for all $n \ge n_0$,

 $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$

Let $c = c_2$. Then $0 \le f(n) \le c \cdot g(n)$, hence f(n) = O(g(n)) by definition. Similarly, let $c = c_1$. Then $0 \le c \cdot g(n)$, hence $f(n) = \Omega(g(n))$.

Conversely, suppose f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. By the definitions, there exist c, and n_1 such that for all $n \ge n_1$, $0 \le f(n) \le c \cdot g(n)$, and there exist c', and n'_1 such that for all $n \ge n'_1$, $0 \le c' \cdot g(n) \le f(n)$. Let $c_1 = c'$, $c_2 = c$, and $n_0 = max(n_1, n'_1)$. Hence $f(n) = \Theta(g(n))$. \Box **3.1-4.** Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?

3.1-4. Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?

To see that $2^{n+1} = O(2^n)$, note that $2^{n+1} = 2 \cdot 2^n$. Thus 2 is the constant we're looking for, and we're done.

Let's attempt a proof that $2^{2n} = O(2^n)$. Does $\exists c, n_0 \mid \forall n \le n_0, 2^{2n} \le c \cdot 2^n$? If so, then

$$\begin{array}{rcl} 2^n \cdot 2^n & \leq & c \cdot 2^n \\ 2^n & \leq & c \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

... which is impossible.

3-1.d. If k > d, then $p(n) = o(n^k)$.

Proof. Suppose k > d and suppose c > 0. Then

$$\begin{array}{rcl} a_0 + a_1 n + \ldots + a_d n^d &<& a_x + a_x n + \ldots + a_x n^d & \text{where } a_x = \max(a_0, a_1, \ldots a_d) \\ &<& d \cdot a_x n^d & (\text{see why I chose } a_x \text{ instead of } a_m?) \\ &<& c \cdot n^k & \text{if } n \text{ is big enough.} \end{array}$$

So, we want $d \cdot a_x < c \cdot n^{k-d}$. This holds as long as

$$n > \left(\frac{d \cdot a_x}{c}\right)^{\frac{1}{k-d}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇