Proof of Horner's rule loop invariant $\left(y=\sum_{k=0}^{n-(i+1)} a_{k+i+1} x^{k}\right)$:
Init. After 0 iterations, $y=0, i=n$ by assignment. So

$$
\sum_{k=0}^{n-(i+1)} a_{k+i+1}=\sum_{k=0}^{-1} a_{k+i+1} x^{k}=0=y
$$

Maint. Now, suppose this holds true after N iterations, that is

$$
y_{\text {old }}=\sum_{k=0}^{n-\left(i_{\text {old }}+1\right)} a_{k+i_{\text {old }}+1} x^{k}
$$

where $y_{\text {old }}$ and $i_{\text {old }}$ are y and i after N iterations. Likewise, let $y_{\text {new }}$ and $i_{\text {new }}$ be the values after $N+1$ iterations.

By assignment $i_{\text {new }}=i_{\text {old }}-1$. Then

$$
\begin{aligned}
& y_{\text {new }}=a_{i_{\text {old }}}+x \cdot y_{\text {old }} \\
& =a_{i_{\text {old }}}+x \cdot \sum_{k=0}^{n-\left(i_{\text {old }}+1\right)} a_{k+i_{\text {old }}+1} x^{k} \\
& =a_{\text {inew }}-1+x \cdot \sum_{k=0}^{n-(\text { inew }+2)} a_{k+\text { inew } x^{k}} \\
& =a_{i_{\text {new }}-1}+\sum_{k=0}^{n-(\text { inew }+2)} a_{k+\text { inew }^{w}} x^{k+1} \\
& =a_{i_{\text {new }}-1}+\sum_{k=1}^{n-\left(\text { inew }^{2}+1\right)} a_{k+i_{n e w}+1} x^{k} \quad \text { by change of variables } \\
& =a_{0+i_{n e w}-1} x^{0}+\sum_{k=1}^{n-\left(i_{n e w}+1\right)} a_{k+i_{n e w}+1} x^{k} \\
& =\sum_{k=0}^{n-\left(\text { inew }^{+1)}\right.} a_{k+i_{n e w}+1} x^{k} \\
& \text { by assignment } \\
& \text { by substitution } \\
& \text { by distribution } \\
& \text { by change of variables } \\
& =\sum_{k=0}^{n-\left(\text { inew }^{+1}\right)} a_{k+i_{n e w}+1} x^{k}
\end{aligned}
$$

Formal definition of big-Theta:

$$
\Theta(g(n))=\left\{f(n) \mid \exists c_{1}, c_{2}, n_{0} \in \mathbb{N} \text { such that } \forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}
$$

$g(n)=\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)$.
Proof. Let $c_{1}=\frac{1}{14}, c_{2}=\frac{1}{2}$ and $n_{0}=7$. Suppose $n>7$. Then

$$
\begin{aligned}
\frac{1}{14} & =\frac{1}{2}-\frac{3}{7}<\frac{1}{2} \\
\frac{1}{14} & \leq \frac{1}{2}-\frac{3}{n} \leq \frac{1}{2} \\
\frac{n^{2}}{14} & \leq \frac{1}{2} n^{2}-3 n \leq \frac{n^{2}}{2} \\
c_{1} n^{2} & \leq g(n) \leq c_{2} n^{2}
\end{aligned}
$$

Therefore $g(n)=\Theta\left(n^{2}\right)$ by definition.

Theorem 3.1. For any two functions $f(n)$ and $g(n)$, we have $f(n)=\Theta(g(n))$ iff $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Proof. Suppose $f=\Theta(g(n))$. Then, by definition of Θ, there exist constants c_{1}, c_{2}, and n_{0} such that for all $n \geq n_{0}$,

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

Let $c=c_{2}$. Then $0 \leq f(n) \leq c \cdot g(n)$, hence $f(n)=O(g(n))$ by definition. Similarly, let $c=c_{1}$. Then $0 \leq c \cdot g(n)$, hence $f(n)=\Omega(g(n))$.

Conversely, suppose $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$. By the definitions, there exist c, and n_{1} such that for all $n \geq n_{1}, 0 \leq f(n) \leq c \cdot g(n)$, and there exist c^{\prime}, and n_{1}^{\prime} such that for all $n \geq n_{1}^{\prime}, 0 \leq c^{\prime} \cdot g(n) \leq f(n)$. Let $c_{1}=c^{\prime}, c_{2}=c$, and $n_{0}=\max \left(n_{1}, n_{1}^{\prime}\right)$. Hence $f(n)=\Theta(g(n))$.
3.1-4. Is $2^{n+1}=O\left(2^{n}\right)$? Is $2^{2 n}=O\left(2^{n}\right)$?
3.1-4. Is $2^{n+1}=O\left(2^{n}\right)$? Is $2^{2 n}=O\left(2^{n}\right)$?

To see that $2^{n+1}=O\left(2^{n}\right)$, note that $2^{n+1}=2 \cdot 2^{n}$. Thus 2 is the constant we're looking for, and we're done.

Let's attempt a proof that $2^{2 n}=O\left(2^{n}\right)$. Does $\exists c, n_{0} \mid \forall n \leq n_{0}, 2^{2 n} \leq c \cdot 2^{n}$? If so, then

$$
\begin{aligned}
2^{n} \cdot 2^{n} & \leq c \cdot 2^{n} \\
2^{n} & \leq c
\end{aligned}
$$

... which is impossible.

3-1.d. If $k>d$, then $p(n)=o\left(n^{k}\right)$.
Proof. Suppose $k>d$ and suppose $c>0$. Then

$$
\begin{aligned}
a_{0}+a_{1} n+\ldots+a_{d} n^{d} & <a_{x}+a_{x} n+\ldots+a_{x} n^{d} & & \text { where } a_{x}=\max \left(a_{0}, a_{1}, \ldots a_{d}\right) \\
& <d \cdot a_{x} n^{d} & & \text { (see why I chose } a_{x} \text { instead of } a_{m} ? \text { ?) } \\
& <c \cdot n^{k} & & \text { if } n \text { is big enough. }
\end{aligned}
$$

So, we want $d \cdot a_{x}<c \cdot n^{k-d}$. This holds as long as

$$
n>\left(\frac{d \cdot a_{x}}{c}\right)^{\frac{1}{k-d}}
$$

