Language class Denotational tool Computational model
Regular languages Regular expressions DFAs and NFAs

Context-free languages Context-free grammars (N)PDAs



You have seen context free grammars before:

Mini-English grammar from DMFP:

Sentence — NounPhrase Predicate PrepPhrase,

NounPhrase

Predicate

VerbPhrase

PrepPhrase

—

s

—

—

Article Adjective,,, Noun

opt

Adverbep, VerbPhrase

TransitiveVerb NounPhrase

IntransitiveVerb

LinkingVerb NounPhrase

Preposition NounPhrase

opt

Arithmetic expressions:

Expr — Variable | Number | (Expr Op Expr)

Op — +|—|x|=+

Appropriately nested strings of parentheses and brackets:

Expr — | (Expr) | [Expr] | Expr Expr



A context-free grammar contains
> An alphabet ¥, the set of terminal symbols
» A set of non-terminal symbols
» Rules for expanding non-terminals
P> A start symbol

(The book unites the terminal and non-terminal symbols into set V, which it calls the
alphabet.)



All regular languages are context-free

» PDAs (§3.3) generalize NFAs
» Context-free languages are closed under union, concatenation, and Kleene star
» We can construct a CFG from a DFA

Not all context-free languages are regular

CFGs represent a strictly more powerful model than DFAs/NFAs.



Perspective: We are taking DFAs, which have no memory, and equipping them with
minimal memory

Definition 3.3.1: A pushdown automaton is a sextuple M = (K, X, T, A,s, F),
where

> K is a finite set of states

> > is an alphabet of input symbols
> [ is a set of stack symbols

> s € K is the initial state

» [ C K is the set of final states

>

A is the transition relation, a subset of

(K x (ZU{e}) x ) x (K x ')

LP, pg 131



Ex 3.3.2.a. Construct a PDA to accept the language of strings with appropriately
nested parenthesis and square brackets.

K={s,q}, T ={([, b} and F = {s}.

s G e ) (a b))
(s [ e ) (aq b))
Ca G ) (g ()
Ca [ ) Ca [ )
(C g 1, bl ) (s ¢ )
(g ) b( ) (s ¢ )
Ca L [ ) (g < )
Ca ) ) (g ¢ )



Ex 3.3.2.b Construct a PDA for the language of strings consisting in a certain number
of occurrences of a followed by between as many and twice as many occurrences of b.

{a™" | m < n <2m}

K={s,q,r,f}
(s a € ) (g xa))
((a a ¢ ) (aq a )
(g b aa ), (rne )
(g b a ) (r,e )
( r, b, aa ), ( r, € )
(Croba ), (r,e )
(( r, b, xa ), ( f, ¢ )
(( r, b, xaa ), ( f, « )



Main points of §3.(4 & 5)

Theorem 3.4.1: The class of languages accepted by nondeterministic pushdown
automata equals the class of context-free languages.
(Deterministic pushdown automata are less powerful.)

Lemma 3.4.1: CFG C PDA. Proof. Construct a a PDA from a CFG.

Lemma 3.4.2: PDA C CFG. Proof. First simplify PDAs, then show the simplification
doesn’t change anything, then construct a CFG from a simplified PDA.

Some languages aren’t context-free.
Theorem 3.5.1: CFGs are closed under union, concatenation, and Kleene star. ..

... but not under intersection or complementation.

LP, pg 136-139, 143



The limitations of CFGs/PDAs

Lemma 3.5.1: The yield of any parse tree of G of height h has length at most ¢(G)".

Theorem 3.5.3: Let G be a context-free grammar. Then any string w € L(G) with
length greater than ¢(G)!V=>! can be rewritten as w = uvxyz in such a way that
either v or y is nonempty and uv”xy"z € L(G) for every n > 0.

Define fanout of G, ¢(G).

Proof outline. Imagine a parse tree. Each node has at most ¢(G) children,
so for height h, the length of the yielded string is at most ¢(G)".
Context-free languages have a form of regularity:

uv'xy"z

So, contrapositively, if a language has no such regularity, it is not context free.
O

LP, pg 145



