
Language class Denotational tool Computational model

Regular languages Regular expressions DFAs and NFAs

Context-free languages Context-free grammars (N)PDAs

You have seen context free grammars before:

Mini-English grammar from DMFP:

Sentence → NounPhrase Predicate PrepPhraseopt

NounPhrase → Article Adjectiveopt Noun

Predicate → Adverbopt VerbPhrase

VerbPhrase →



TransitiveVerb NounPhrase

IntransitiveVerb

LinkingVerb NounPhrase

PrepPhrase → Preposition NounPhrase

Arithmetic expressions:

Expr → Variable | Number | (Expr Op Expr)

Op → + | − | ∗ | ÷

Appropriately nested strings of parentheses and brackets:

Expr → ε | (Expr) | [Expr] | Expr Expr

A context-free grammar contains

I An alphabet Σ, the set of terminal symbols

I A set of non-terminal symbols

I Rules for expanding non-terminals

I A start symbol

(The book unites the terminal and non-terminal symbols into set V , which it calls the
alphabet.)

All regular languages are context-free

I PDAs (§3.3) generalize NFAs

I Context-free languages are closed under union, concatenation, and Kleene star

I We can construct a CFG from a DFA

Not all context-free languages are regular

CFGs represent a strictly more powerful model than DFAs/NFAs.

Perspective: We are taking DFAs, which have no memory, and equipping them with
minimal memory

Definition 3.3.1: A pushdown automaton is a sextuple M = (K ,Σ, Γ,∆, s,F),
where

I K is a finite set of states

I Σ is an alphabet of input symbols

I Γ is a set of stack symbols

I s ∈ K is the initial state

I F ⊆ K is the set of final states

I ∆ is the transition relation, a subset of

(K × (Σ ∪ {ε})× Γ*)× (K × Γ*)

LP, pg 131

Ex 3.3.2.a. Construct a PDA to accept the language of strings with appropriately
nested parenthesis and square brackets.

K = {s, q}, Γ = {(, [, b} and F = {s}.

((s, (, ε), (q, b())
((s, [, ε), (q, b[))
((q, (, ε), (q, ())
((q, [, ε), (q, [))
((q,], b[), (s, ε))
((q,), b(), (s, ε))
((q,], [), (q, ε))
((q,), (), (q, ε))

Ex 3.3.2.b Construct a PDA for the language of strings consisting in a certain number
of occurrences of a followed by between as many and twice as many occurrences of b.

{ambn | m ≤ n ≤ 2m}

K = {s, q, r , f }

((s, a, ε), (q, xaa))
((q, a, ε), (q, aa))
((q, b, aa), (r , ε))
((q, b, a), (r , ε))
((r , b, aa), (r , ε))
((r , b, a), (r , ε))
((r , b, xa), (f , ε))
((r , b, xaa), (f , ε))

Main points of §3.(4 & 5)

Theorem 3.4.1: The class of languages accepted by nondeterministic pushdown
automata equals the class of context-free languages.
(Deterministic pushdown automata are less powerful.)

Lemma 3.4.1: CFG ⊆ PDA. Proof. Construct a a PDA from a CFG.

Lemma 3.4.2: PDA ⊆ CFG . Proof. First simplify PDAs, then show the simplification
doesn’t change anything, then construct a CFG from a simplified PDA.

Some languages aren’t context-free.

Theorem 3.5.1: CFGs are closed under union, concatenation, and Kleene star. . .

. . . but not under intersection or complementation.
LP, pg 136–139, 143

The limitations of CFGs/PDAs

Lemma 3.5.1: The yield of any parse tree of G of height h has length at most φ(G)h.

Theorem 3.5.3: Let G be a context-free grammar. Then any string w ∈ L(G) with
length greater than φ(G)|V−Σ| can be rewritten as w = uvxyz in such a way that
either v or y is nonempty and uvnxynz ∈ L(G) for every n ≥ 0.

Define fanout of G , φ(G).

Proof outline. Imagine a parse tree. Each node has at most φ(G) children,
so for height h, the length of the yielded string is at most φ(G)h.
Context-free languages have a form of regularity:

u vn x yn z

So, contrapositively, if a language has no such regularity, it is not context free.
�

LP, pg 145

