
Language class Denotational tool Computational model

Regular languages Regular expressions DFAs and NFAs

Context-free languages Context-free grammars (N)PDAs



You have seen context free grammars before:

Mini-English grammar from DMFP:

Sentence → NounPhrase Predicate PrepPhraseopt

NounPhrase → Article Adjectiveopt Noun

Predicate → Adverbopt VerbPhrase

VerbPhrase →



TransitiveVerb NounPhrase

IntransitiveVerb

LinkingVerb NounPhrase

PrepPhrase → Preposition NounPhrase

Arithmetic expressions:

Expr → Variable | Number | (Expr Op Expr)

Op → + | − | ∗ | ÷

Appropriately nested strings of parentheses and brackets:

Expr → ε | (Expr) | [Expr ] | Expr Expr



A context-free grammar contains

I An alphabet Σ, the set of terminal symbols

I A set of non-terminal symbols

I Rules for expanding non-terminals

I A start symbol

(The book unites the terminal and non-terminal symbols into set V , which it calls the
alphabet.)



All regular languages are context-free

I PDAs (§3.3) generalize NFAs

I Context-free languages are closed under union, concatenation, and Kleene star

I We can construct a CFG from a DFA

Not all context-free languages are regular

CFGs represent a strictly more powerful model than DFAs/NFAs.



Perspective: We are taking DFAs, which have no memory, and equipping them with
minimal memory

Definition 3.3.1: A pushdown automaton is a sextuple M = (K ,Σ, Γ,∆, s,F ),
where

I K is a finite set of states

I Σ is an alphabet of input symbols

I Γ is a set of stack symbols

I s ∈ K is the initial state

I F ⊆ K is the set of final states

I ∆ is the transition relation, a subset of

(K × (Σ ∪ {ε})× Γ*)× (K × Γ*)

LP, pg 131



Ex 3.3.2.a. Construct a PDA to accept the language of strings with appropriately
nested parenthesis and square brackets.

K = {s, q}, Γ = {(, [, b} and F = {s}.

(( s, (, ε ), ( q, b( ))
(( s, [, ε ), ( q, b[ ))
(( q, (, ε ), ( q, ( ))
(( q, [, ε ), ( q, [ ))
(( q, ], b[ ), ( s, ε ))
(( q, ), b( ), ( s, ε ))
(( q, ], [ ), ( q, ε ))
(( q, ), ( ), ( q, ε ))



Ex 3.3.2.b Construct a PDA for the language of strings consisting in a certain number
of occurrences of a followed by between as many and twice as many occurrences of b.

{ambn | m ≤ n ≤ 2m}

K = {s, q, r , f }

(( s, a, ε ), ( q, xaa ))
(( q, a, ε ), ( q, aa ))
(( q, b, aa ), ( r , ε ))
(( q, b, a ), ( r , ε ))
(( r , b, aa ), ( r , ε ))
(( r , b, a ), ( r , ε ))
(( r , b, xa ), ( f , ε ))
(( r , b, xaa ), ( f , ε ))



Main points of §3.(4 & 5)

Theorem 3.4.1: The class of languages accepted by nondeterministic pushdown
automata equals the class of context-free languages.
(Deterministic pushdown automata are less powerful.)

Lemma 3.4.1: CFG ⊆ PDA. Proof. Construct a a PDA from a CFG.

Lemma 3.4.2: PDA ⊆ CFG . Proof. First simplify PDAs, then show the simplification
doesn’t change anything, then construct a CFG from a simplified PDA.

Some languages aren’t context-free.

Theorem 3.5.1: CFGs are closed under union, concatenation, and Kleene star. . .

. . . but not under intersection or complementation.
LP, pg 136–139, 143



The limitations of CFGs/PDAs

Lemma 3.5.1: The yield of any parse tree of G of height h has length at most φ(G )h.

Theorem 3.5.3: Let G be a context-free grammar. Then any string w ∈ L(G ) with
length greater than φ(G )|V−Σ| can be rewritten as w = uvxyz in such a way that
either v or y is nonempty and uvnxynz ∈ L(G ) for every n ≥ 0.

Define fanout of G , φ(G ).

Proof outline. Imagine a parse tree. Each node has at most φ(G ) children,
so for height h, the length of the yielded string is at most φ(G )h.
Context-free languages have a form of regularity:

u vn x yn z

So, contrapositively, if a language has no such regularity, it is not context free.
�

LP, pg 145


