Language class	Denotational tool	Computational model		
Regular languages	Regular expressions	DFAs and NFAs		
Context-free languages	Context-free grammars	(N)PDAs		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

You have seen context free grammars before:

Mini-English grammar from DMFP:

Sentence \rightarrow NounPhrase Predicate PrepPhrase_{opt}

Arithmetic expressions:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

NounPhrase	\rightarrow	Article Adjective _{opt} Noun	Expr \rightarrow Variable Number (Expr Op Expr)
Predicate	\rightarrow	Adverb _{opt} VerbPhrase	$Op \rightarrow + - * \div$
		(TransitiveVerb NounPhrase	
VerbPhrase	\rightarrow	IntransitiveVerb	Appropriately nested strings of parentheses and brackets:
		LinkingVerb NounPhrase	Expr $\rightarrow \varepsilon \mid$ (Expr) \mid [Expr] \mid Expr Expr

PrepPhrase \rightarrow Preposition NounPhrase

A context-free grammar contains

- An alphabet Σ , the set of *terminal symbols*
- A set of non-terminal symbols
- Rules for expanding non-terminals
- A start symbol

(The book unites the terminal and non-terminal symbols into set V, which it calls the *alphabet*.)

All regular languages are context-free

- PDAs (§3.3) generalize NFAs
- ► Context-free languages are closed under union, concatenation, and Kleene star
- We can construct a CFG from a DFA

Not all context-free languages are regular

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

CFGs represent a strictly more powerful model than DFAs/NFAs.

Perspective: We are taking DFAs, which have no memory, and equipping them with minimal memory

Definition 3.3.1: A pushdown automaton is a sextuple $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

- ► *K* is a finite set of **states**
- \blacktriangleright Σ is an alphabet of **input symbols**
- Γ is a set of stack symbols
- $s \in K$ is the **initial state**
- $F \subseteq K$ is the set of **final states**
- Δ is the **transition relation**, a subset of

```
(K \times (\Sigma \cup \{\varepsilon\}) \times \Gamma *) \times (K \times \Gamma *)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

LP, pg 131

Ex 3.3.2.a. Construct a PDA to accept the language of strings with appropriately nested parenthesis and square brackets.

 $K = \{s, q\}, \Gamma = \{(, [, b\} \text{ and } F = \{s\}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Ex 3.3.2.b Construct a PDA for the language of strings consisting in a certain number of occurrences of a followed by between as many and twice as many occurrences of b.

$$\{a^mb^n \mid m \le n \le 2m\}$$

 $K = \{s, q, r, f\}$

((s ,	а,	ε),	($\boldsymbol{q},$	хаа))
((q,	а,	ε),	(q ,	аа))
((q,	Ь,	аа),	(r,	ε))
((q ,	Ь,	а),	(r,	ε))
((<i>r</i> ,	Ь,	аа),	(r,	ε))
((<i>r</i> ,	Ь,	а),	(r,	ε))
((<i>r</i> ,	Ь,	ха),	(f,	ε))
((r,	Ь,	хаа),	(f,	ε))

Main points of §3.(4 & 5)

Theorem 3.4.1: The class of languages accepted by *nondeterministic* pushdown automata equals the class of context-free languages. (*Deterministic* pushdown automata are less powerful.)

Lemma 3.4.1: $CFG \subseteq PDA$. **Proof.** Construct a a PDA from a CFG.

Lemma 3.4.2: $PDA \subseteq CFG$. **Proof.** First simplify PDAs, then show the simplification doesn't change anything, then construct a CFG from a simplified PDA.

Some languages *aren't context-free*.

Theorem 3.5.1: CFGs are closed under union, concatenation, and Kleene star...

... but not under intersection or complementation.

LP, pg 136-139, 143

The limitations of CFGs/PDAs

Lemma 3.5.1: The yield of any parse tree of G of height h has length at most $\phi(G)^h$.

Theorem 3.5.3: Let G be a context-free grammar. Then any string $w \in L(G)$ with length greater than $\phi(G)^{|V-\Sigma|}$ can be rewritten as w = uvxyz in such a way that either v or y is nonempty and $uv^nxy^nz \in L(G)$ for every $n \ge 0$.

Define **fanout** of *G*, $\phi(G)$.

Proof outline. Imagine a parse tree. Each node has at most $\phi(G)$ children, so for height h, the length of the yielded string is at most $\phi(G)^h$. Context-free languages have a form of regularity:

$$u v^n x y^n z$$

So, contrapositively, if a language has no such regularity, it is not context free. \Box

LP, pg 145