Theorem 8.1. For any comparison-based sorting algorithm, the worst-case number of comparisons is $\Omega(n \lg n)$.

Proof. For sequences of size n, there are n ! permutations, each of which are possible outcomes. Consider the decision tree where each node is a comparison between two array positions.
Let ℓ be the number of leaves and h the height of the tree. And so

$$
\begin{array}{rlrl}
n! & \leq \ell & & \text { since every permutation must be a leaf } \\
\ell & \leq 2^{h} & & \text { since a tree can't have more than } 2^{h} \text { leaves } \\
h & \leq \lg n! & \\
& =\Theta(n \lg n) & \text { by eq } 3.19 \text { in CLRS }
\end{array}
$$

Hence $h=\Omega(n \lg n)$, and thus there must be a permutation reachable by no less than $\Omega(n \lg n)$ comparisons.
8.1-3.a. Can a comparison-based sorting algorithm have linear running time for at least half the inputs of size n ?

Suppose so, that is, suppose there exists a c such that for $\frac{n!}{2}$ of the items, their path is fewer than cn links. This means that in the portion of the tree less than cn links from the root, there are $\frac{n!}{2}$ leaves. In fact, the most possible leaves are $2^{c n}$. Thus,

$$
\begin{array}{rlrl}
\frac{n!}{2} & \leq 2^{c n} & \lg (n!) & \leq c n+1 \\
n! & \leq 2^{c n+1} & c & \geq \frac{\lg (n!)}{n}-\frac{1}{n}
\end{array}
$$

Since $\lg (n!)=\Omega(n \lg n)$, there exists a d such that $\lg (n!) \geq d n \lg n$.

$$
c \geq \frac{\lg (n!)}{n}-\frac{1}{n} \geq \frac{d n \lg n}{n}-\frac{1}{n}=d \lg n-\frac{1}{n}
$$

$\frac{1}{n}$ approaches 0 and $d \lg n$ approaches ∞ (slowly). So, c cannot be a constant. Alternately, we could observe that $\frac{n!}{2} \leq 2^{h}$, and so

$$
h \geq \lg n!-1=\Omega(n \lg n)
$$

8.1-3.b. Can a comparison-based sorting algorithm have linear running time for $\frac{1}{n}$ of the inputs of size n ?

Suppose so. Then

$$
\begin{gathered}
\frac{n!}{n} \leq 2^{c n} \\
\lg (n!)-\lg n \leq c n \\
c \geq \frac{\lg (n!)-\lg n}{n} \geq \frac{d n \lg n}{n} \geq d \lg n-\frac{\lg n}{n}
\end{gathered}
$$

Since the $\frac{\lg n}{n}$ term approaches 0 , the last expression is increasing. Hence c is not constant.
Alternately, $\frac{n!}{n} \leq 2^{h}$, so

$$
h \geq \lg n!-\lg n=\Omega(n \lg n)
$$

8.1-3.c. Can a comparison-based sorting algorithm have linear running time for $\frac{1}{2^{n}}$ of the inputs of size n ?

Suppose so. Then

$$
\begin{aligned}
\frac{n!}{2^{n}} & \leq 2^{c n} \\
n! & \leq 2^{(c+1) n} \\
\lg (n!) & \leq(c+1) n \\
c & \geq \frac{\lg (n!)}{n}-1 \\
& \geq \frac{d n \lg n}{n}-1 \\
& =d \lg n-1
\end{aligned}
$$

Alternately, $\frac{n!}{2^{n}} \leq 2^{h}$, so

$$
h \geq \lg n!-n=\Omega(n \lg n)
$$

8.1-4. The number of permutations is $\underbrace{k!\cdot k!\ldots k!}_{\frac{n}{k}}$, that is, $(k!)^{\frac{n}{k}}$.

For a decision tree of height $h,(k!)^{\frac{n}{k}} \leq 2^{h}$. So,

$$
\begin{aligned}
h & \geq \lg \left((k!)^{\frac{n}{k}}\right) \\
& =\frac{n}{k} \lg (k!) \\
& =\frac{n}{k} d k \lg k \quad \text { for some } d \\
& =d n \lg k
\end{aligned}
$$

Hence $\Omega(n \lg k)$.

