
Game plan for computational geometry (CLRS 33)

I Basic computational geometry concepts (§33.1)
I Representing points and segments
I Testing for direction between two directed segments
I Testing for intersection

I Computing the convex hull (§33.3)



Cross products, p1 = (x1, y1), p2 = (x2, y2).

1. Actual cross product, p1 = (x1, y1, 0), p2 = (x2, y2, 0). And so
p1 × p2 = (0, 0, x1y2 − y1x2)
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Subtraction to determine direction
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Graham’s Scan

I Find an extreme point, such as with a minimum y -value, call it p0.





Theorem 1. The points with minimum and maximum x and y values are on the hull.

Proof. WOLOG, consider the point (x0, y0) with minimum y value, and sup-
pose that point is in the interior of the hull.

Consider the vertical line through that point, and consider the segment of the
convex hull that is intersected by that line below the point.

Call the point of intersection (x1, y1). Note that x1 = x0 and y1 < y0.

At least one end point of that segment must have a y value less than or equal
to y1, call that point (x2, y2). Then

y2 ≤ y1 < y0

. . . which contradicts (x0, y0) being the point with minimum y -value. �



Graham’s Scan

I Find an extreme point, such as with a minimum y -value, call it p0.

I Sort the points by polar angle about p0 (say, counterclockwise), call them
p1, p2, . . . pm.

I Push p0, p1, and p2 onto a stack.
I For each remaining point px in sorted order,

I While the top stack elements make a non-left turn to pi
I pop

I push px



Theorem 2. p0p1 makes a left turn to all other points.

Proof. Suppose px ∈ {p2, p3, . . . pm}. Since the points are sorted by polar
angle about p0, (px − p0)× (p1 − p0) > 0, that is, ∠p0p1px turns left. �

Corollary 3. The algorithm never pops p1.
Proof. By Theorem 2, the guard of the while loop is never true when p1 is on
the top of the stack. �



Theorem 4. The points with least and greatest polar angles with respect to p0 are on
the convex hull.

Proof. Note that p1 is the point with least polar angle with respect to p0,
since the points are sorted by polar angle. Suppose, then, that p1 is in the
interior of the hull.

Similarly to the proof of Theorem 1, we shall consider the segment of the hull
intersected by a line through p1. The point p0 is either left or right of p1.

Case 1. Suppose p0 is left of p1. Then consider the vertical line through
p1 that hits a segment (or point) below p1. At least one endpoint of that
segment (or the point itself) must have a smaller polar angle from p0 than p1
has, which contradicts the sortedness of the points.

Case 2. Suppose p0 is right of p1. Then consider the horizontal line through
p1 that hits a segment (or point) right of p1. At least one endpoint of that
segment (or the point itself) must have a smaller polar angle from p0 than p0
has, which contradicts the sortedness of the points.

The reasoning is similar for the point that has the greatest polar angle, pm. �



Postcondition (correctness claim). The contents of the stack are the points of the
hull, counterclockwise.

To prove this, we using the following as a lemma:

Invariant. After i iterations of the for loop, the stack contains the convex hull of the
points {p0, p1, . . . pi+2}.

Initialization. Before the loop begins, the stack contains p0, p1, p2, which
constitute the convex hull of those points since any three non-collinear points
are the end points of their own convex hull.

Maintenance. Suppose after i iterations, the stack contains the convex hull
of {p0, p1, . . . , pi+2}. Consider what happens on the next iteration, on which
we process the point pi+3.

Let pj be the top point on the stack at the end of the while loop. The stack
is in the same state as after the j − 2nd iteration.

. . . wait, how do we know that?



Invariant. After i iterations of the for loop, the stack contains the convex hull of the
points {p0, p1, . . . pi+2}.

Initialization. Before the loop begins, the stack contains p0, p1, p2, which
constitute the convex hull of those points since any three non-collinear points
are the end points of their own convex hull.

Maintenance. Suppose after i iterations, the stack contains the convex hull
of {p0, p1, . . . , pi+2}. Consider what happens on the next iteration, on which
we process the point pi+3.

Let pj be the top point on the stack at the end of the while loop. The stack
is in the same state as after the j − 2nd iteration. By Corollary 3, the stack in
that state had size at least 2. Let pk be the point immediately below pj .

By induction, the stack in that state contains the convex hull of
{p0, p1, . . . pk , pj}

Something’s wrong . . .



Invariant. After i iterations of the for loop, the stack contains the convex hull of the
points {p0, p1, . . . pi+2}.

Initialization. Before the loop begins, the stack contains p0, p1, p2, which
constitute the convex hull of those points since any three non-collinear points
are the end points of their own convex hull.

Maintenance. Suppose that for some i ≥ 0, for all j , 0 ≤ j ≤ i , after j
iterations, the stack contains the convex hull of {p0, p1, . . . , pj+2}.

Consider what happens on the iteration after i iterations, on which we process
the point pi+3.

Let pj be the top point on the stack at the end of the while loop. The stack
is in the same state as after the j − 2nd iteration. By Corollary 3, the stack in
that state had size at least 2. Let pk be the point immediately below pj .

By strong induction, the stack in that state contains the convex hull of
{p0, p1, . . . pk , pj}.



[Need to show that the points pj+1 to pi2 , inclusive, are on the interior of the
hull of {p0, p1, . . . pi+3.]

Suppose pt ∈ {pj+1, pi2}. Consider various cases corresponding to when pt
was popped from the stack.

Case 1. Suppose pt was popped on the current iteration. What was immedi-
ately below pt on the stack?

Case 1a. Suppose pj was immediately below pt on the stack . . .

Case 1b. Suppose another (interior) point, pr was below pt on the stack . . .

Case 2. Suppose pt was popped on another iteration of the for loop, when ps
was being considered. Let pq be the point immediately below pt on the stack
at that time . . .
�



Graham’s Scan

I Find an extreme point, such as with a minimum y -value, call it p0.

I Sort the points by polar angle about p0 (say, counterclockwise), call them
p1, p2, . . . pm.

I Push p0, p1, and p2 onto a stack.
I For each remaining point px in sorted order,

I While the top stack elements make a non-left turn to pi
I pop

I push px

Termination. After m − 2 iterations, the for loop exists, and, by the loop
invariant, the stack is the convex hull of the points {p0, p1, . . . pm}. �




