Game plan for computational geometry (CLRS 33)

- Basic computational geometry concepts (§33.1)
- Representing points and segments
- Testing for direction between two directed segments
- Testing for intersection
- Computing the convex hull (§33.3)

Cross products, $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right)$.

1. Actual cross product, $p_{1}=\left(x_{1}, y_{1}, 0\right), p_{2}=\left(x_{2}, y_{2}, 0\right)$. And so $p_{1} \times p_{2}=\left(0,0, x_{1} y_{2}-y_{1} x_{2}\right)$
2. Area of a parallelogram

3. Determinant of a matrix

$$
\operatorname{det}\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]=x_{1} y_{2}-x_{2} y_{1}
$$

Subtraction

Subtraction to determine direction

Graham's Scan

- Find an extreme point, such as with a minimum y-value, call it p_{0}.

Theorem 1. The points with minimum and maximum x and y values are on the hull. Proof. WOLOG, consider the point $\left(x_{0}, y_{0}\right)$ with minimum y value, and suppose that point is in the interior of the hull.

Consider the vertical line through that point, and consider the segment of the convex hull that is intersected by that line below the point.

Call the point of intersection $\left(x_{1}, y_{1}\right)$. Note that $x_{1}=x_{0}$ and $y_{1}<y_{0}$.
At least one end point of that segment must have a y value less than or equal to y_{1}, call that point $\left(x_{2}, y_{2}\right)$. Then

$$
y_{2} \leq y_{1}<y_{0}
$$

... which contradicts $\left(x_{0}, y_{0}\right)$ being the point with minimum y-value.

Graham's Scan

- Find an extreme point, such as with a minimum y-value, call it p_{0}.
- Sort the points by polar angle about p_{0} (say, counterclockwise), call them $p_{1}, p_{2}, \ldots p_{m}$.
- Push p_{0}, p_{1}, and p_{2} onto a stack.
- For each remaining point p_{x} in sorted order,
- While the top stack elements make a non-left turn to p_{i}
- pop
- push p_{x}

Theorem 2. $\overline{p_{0} p_{1}}$ makes a left turn to all other points.
Proof. Suppose $p_{x} \in\left\{p_{2}, p_{3}, \ldots p_{m}\right\}$. Since the points are sorted by polar angle about $p_{0},\left(p_{x}-p_{0}\right) \times\left(p_{1}-p_{0}\right)>0$, that is, $\angle p_{0} p_{1} p_{x}$ turns left.

Corollary 3. The algorithm never pops p_{1}.
Proof. By Theorem 2, the guard of the while loop is never true when p_{1} is on the top of the stack.

Theorem 4. The points with least and greatest polar angles with respect to p_{0} are on the convex hull.

Proof. Note that p_{1} is the point with least polar angle with respect to p_{0}, since the points are sorted by polar angle. Suppose, then, that p_{1} is in the interior of the hull.

Similarly to the proof of Theorem 1, we shall consider the segment of the hull intersected by a line through p_{1}. The point p_{0} is either left or right of p_{1}.

Case 1. Suppose p_{0} is left of p_{1}. Then consider the vertical line through p_{1} that hits a segment (or point) below p_{1}. At least one endpoint of that segment (or the point itself) must have a smaller polar angle from p_{0} than p_{1} has, which contradicts the sortedness of the points.

Case 2. Suppose p_{0} is right of p_{1}. Then consider the horizontal line through p_{1} that hits a segment (or point) right of p_{1}. At least one endpoint of that segment (or the point itself) must have a smaller polar angle from p_{0} than p_{0} has, which contradicts the sortedness of the points.

The reasoning is similar for the point that has the greatest polar angle, p_{m}. \qquad

Postcondition (correctness claim). The contents of the stack are the points of the hull, counterclockwise.

To prove this, we using the following as a lemma:
Invariant. After i iterations of the for loop, the stack contains the convex hull of the points $\left\{p_{0}, p_{1}, \ldots p_{i+2}\right\}$.

Initialization. Before the loop begins, the stack contains p_{0}, p_{1}, p_{2}, which constitute the convex hull of those points since any three non-collinear points are the end points of their own convex hull.

Maintenance. Suppose after i iterations, the stack contains the convex hull of $\left\{p_{0}, p_{1}, \ldots, p_{i+2}\right\}$. Consider what happens on the next iteration, on which we process the point p_{i+3}.

Let p_{j} be the top point on the stack at the end of the while loop. The stack is in the same state as after the $j-2 n d$ iteration.
... wait, how do we know that?

Invariant. After i iterations of the for loop, the stack contains the convex hull of the points $\left\{p_{0}, p_{1}, \ldots p_{i+2}\right\}$.

Initialization. Before the loop begins, the stack contains p_{0}, p_{1}, p_{2}, which constitute the convex hull of those points since any three non-collinear points are the end points of their own convex hull.

Maintenance. Suppose after i iterations, the stack contains the convex hull of $\left\{p_{0}, p_{1}, \ldots, p_{i+2}\right\}$. Consider what happens on the next iteration, on which we process the point p_{i+3}.

Let p_{j} be the top point on the stack at the end of the while loop. The stack is in the same state as after the $j-2$ nd iteration. By Corollary 3, the stack in that state had size at least 2. Let p_{k} be the point immediately below p_{j}.
By induction, the stack in that state contains the convex hull of $\left\{p_{0}, p_{1}, \ldots p_{k}, p_{j}\right\}$
Something's wrong ...

Invariant. After i iterations of the for loop, the stack contains the convex hull of the points $\left\{p_{0}, p_{1}, \ldots p_{i+2}\right\}$.

Initialization. Before the loop begins, the stack contains p_{0}, p_{1}, p_{2}, which constitute the convex hull of those points since any three non-collinear points are the end points of their own convex hull.

Maintenance. Suppose that for some $i \geq 0$, for all $j, 0 \leq j \leq i$, after j iterations, the stack contains the convex hull of $\left\{p_{0}, p_{1}, \ldots, p_{j+2}\right\}$.

Consider what happens on the iteration after i iterations, on which we process the point p_{i+3}.

Let p_{j} be the top point on the stack at the end of the while loop. The stack is in the same state as after the $j-2 n d$ iteration. By Corollary 3, the stack in that state had size at least 2. Let p_{k} be the point immediately below p_{j}.

By strong induction, the stack in that state contains the convex hull of $\left\{p_{0}, p_{1}, \ldots p_{k}, p_{j}\right\}$.
[Need to show that the points p_{j+1} to $p_{i_{2}}$, inclusive, are on the interior of the hull of $\left\{p_{0}, p_{1}, \ldots p_{i+3}\right.$.]

Suppose $p_{t} \in\left\{p_{j+1}, p_{i_{2}}\right\}$. Consider various cases corresponding to when p_{t} was popped from the stack.

Case 1. Suppose p_{t} was popped on the current iteration. What was immediately below p_{t} on the stack?

Case 1a. Suppose p_{j} was immediately below p_{t} on the stack...
Case 1b. Suppose another (interior) point, p_{r} was below p_{t} on the stack...
Case 2. Suppose p_{t} was popped on another iteration of the for loop, when p_{s} was being considered. Let p_{q} be the point immediately below p_{t} on the stack at that time...

Graham's Scan

- Find an extreme point, such as with a minimum y-value, call it p_{0}.
- Sort the points by polar angle about p_{0} (say, counterclockwise), call them $p_{1}, p_{2}, \ldots p_{m}$.
- Push p_{0}, p_{1}, and p_{2} onto a stack.
- For each remaining point p_{x} in sorted order,
- While the top stack elements make a non-left turn to p_{i}
- pop
- push p_{x}

Termination. After $m-2$ iterations, the for loop exists, and, by the loop invariant, the stack is the convex hull of the points $\left\{p_{0}, p_{1}, \ldots p_{m}\right\} . \square$

