From CLRS, pg 39:
Describe a $\Theta(n \lg n)$-time algorithm that, given a set S of n integers and another integer x determines whether or not there exist two elements in S whose sum is exactly x.

Invariant (Loop of findPairSum)
After $k \in \mathbb{W}$ iterations,
(a) $\forall a \in[0, i), s[a]+s[j]<x$
(b) $\forall b \in(j, n), s[i]+s[b]>x$
(c) $j-i=n-k-1$

Correctness Claim (findPairSum)
The method findPairSum returns two values in the given sequence that sum to x, if any exist.

Proof. By induction on k, the number of iterations.
Initialization. Suppose $k=0$ (before the loop starts). $i=0$ and $j=n-1$. The two ranges $[0, i)$ and (j, n) are empty, and so clauses (a) and (b) are vacuously true. Moreover, $j-i=n-1-0=n-0-1=n-k-1$.

Maintenance. Suppose the invariant is true after k iterations, for some $k \geq 0$. Suppose a $k+1$ st iteration occurs. By the guard (which must have been true), either $S[i]+S[j]<x$ or $S[i]+S[j]>x$.

Suppose $S[i]+S[j]<x$. By the inductive hypothesis, for all a $\in[0, i)$, $S[a]+S[j]<x$. Hence for all $a \in[0, i+1), S[a]+S[j]<x$. The invariant is maintained after i is incremented.

The situation is similar if $S[i]+S[j]>x$.
Additionally, either i is incremented or j is decremented. In either case $j_{n e w}-$ $i_{\text {new }}=\left(j_{\text {old }}-i_{\text {old }}\right)-1=n-k-1-1=n-(k+1)-1$.

Hence the invariant holds after $k+1$ iterations.

Termination. After n iterations, $j-i=-1$ so $i>j$. Hence the loop will terminate after at most n iterations.

After the loop terminates, either $i>j$ or $S[i]+S[j]=x$.
Suppose $i>j$. Then, by the loop invariant, no elements exist that sum to x, and the algorithm correctly returns None.

On the other hand, suppose $S[i]+S[j]=x$. Then the algorithm correctly returns $S[i]$ and $S[j]$.

2-3. Horner's rule for evaluating a polynomial:

$$
\begin{aligned}
P(X) & =\sum_{k=0}^{n} a_{k} x^{k} \\
& =a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots x\left(a_{n-1}+x a_{n}\right) \cdots\right)\right)
\end{aligned}
$$

a. $\Theta(n)$.
b. What's the naïve way? How naïve?
$y=0 \quad z$ keeps a running power of x. If we were computing x^{n} froms
$z=1$
$i=0$
while $i \leq n$

$$
\begin{aligned}
& y=y+a_{i} \cdot z \\
& z=z \cdot x \\
& i=i+1
\end{aligned}
$$

scratch, this would make each exponentiation $\Theta(n)$, so we would have $\Theta\left(n^{2}\right)$ total. (However, the book does say on pg 24 that we can assume exponentiation with small integer exponents are constant time.)
Both the given and my way are $\Theta(n)$. The difference is in the constant: 3 ops and 2 assignments vs 4 ops and 3 assignments.

For next time
Read Chapter 3, focusing on difference among formal definitions in Section 3.1
Do Problem 2-3.c. Prove the given invariant.
Do Exercises 3.1-(4 \& 5)

