
def findMissing(a):

if a[0] != 0:

return 0

elif a[-1] == len(a) -1:

return len(a)

else :

start = 0

stop = len(a) - 1

assert a[start] == start and a[stop] == stop + 1

while stop > start + 1 :

mid = (stop + start) / 2

if a[mid] == mid :

start = mid

else :

assert a[mid] == mid + 1

stop = mid

return stop



start = 0

stop = len(a) - 1

while stop > start + 1 :

mid = (stop + start) / 2

if a[mid] == mid :

start = mid

else :

stop = mid

After i iterations,

(a) a[start] = start

(b) a[stop] = stop + 1

(c) stop − start = n
2i

Initialization. After 0 iterations, (a) and (b) are true by the conditions of the outer
if/else chain. Moreover,

stop − start = n =
n

1
=

n

20
=

n

2i

Maintenance. Suppose the invariant holds after i iterations for some i ≥ 0. By the
precondition of the function, a[mid ] = mid or a[mid ] = mid + 1. Either way, the
change to start and stop preserves the invariant.
Moreover,

mid − start =
start + stop

2
− start =

stop − start

2
=

n
2i

2
=

n

2i+1



start = 0

stop = len(a) - 1

while stop > start + 1 :

mid = (stop + start) / 2

if a[mid] == mid :

start = mid

else :

stop = mid

After i iterations,

(a) a[start] = start

(b) a[stop] = stop + 1

(c) stop − start = n
2i

Termination. (Informally) The size of the range [start, stop) decreases by half each
time, so after lg n iterations the range has size one and the loop stops.

(Formally) After lg n iterations, stop − start = n
2i

= n
2lg n = n

n = 1, and the guard failes.

After the loop terminates, stop = start + 1. The loop invariant indicates that
a[start] = start but a[stop] = stop + 1. Hence stop is the correct result. 2



You are playing a computer game in which the hero must
pass through a series of rooms and halls collecting trea-
sure. There are 2n rooms (in pairs) and n − 1 halls in-
terspersed between the pairs. Each room has a one-way
door to the next hall, and each hall has two one-way doors
to the rooms of the next pair. The hero must, therefore,
pass through exactly one room in each pair.

Each room has a certain amount of treasure, Ti ,j . Halls
do not have treasure, but they each have a guardian who
demands payment to let the hero cross diagonally through
the hall. So, to move from Ti−1,0 to Ti ,0 is free, but to
move from Ti−1,0 to Ti ,1 costs Pi .

Devise and implement an algorithm to find the route that
yields the most treasure. Analyze its efficiency.

10 5 3
6

20 4 2
8

9 7 1
3

5 12 0



Let

I Ti ,j be the amount of treasure in room i , j . (Given)

I Pi be the penalty for crossing the hall between the ith and i + 1st pair of rooms.
(Given)

I Ci ,j be the most treasure than can be obtained on any route ending at room i , j .
(“Scratch work”)

I Di ,j be the direction the hero should come from in order to get to room i , j with
the most treasure. (“Scratch work”)

I R be the route the hero should take, as a list indicating which side of the hall the
hero should be on. (Solution to be returned)

Throughout, variable i ranges over [0, n) and j ranges over [0, 2).

Ci ,j =


Ti ,j if i = 0

Ti ,j + max(Ci−1,j ,Ci−1,j+1%2 − Pi−1) otherwise



DP goals in CSCI 345:

I Know what DP is and to what sort of problems it applies

I Be able to code up a table-populating algorithm when the recursive
characterization is given to you.

DP goals in CSCI 445:

I Be able to derive a recursive characterization to a given problem.

I Be able to code up a table-populating algorithm and an algorithm to reconstruct
the optimal solution using the recursive characterization you have derived.



The rod-cutting problem (CLRS pg 360):

Given a table of prices for rods of different lengths and a rod (that is, a length),
what is the most valuable way to cut up the rod into smaller rods?

Problem instance in the book:

length 1 2 3 4 5 6 7 8 9 10

price 1 5 8 9 10 17 17 20 24 30
density 1 2.5 2.66 2.25 2 2.83 2.43 2.5 2.66 3



Problem instance changed slightly:

length 1 2 3 4 5 6 7 8 9 10

price 1 5 8 9 10 17 17 20 24 29
density 1 2.5 2.66 2.25 2 2.83 2.43 2.5 2.66 2.9

Consider a given rod of length 14. How should we cut it?

Using the greedy strategy (price-densest first), we would do

10 3 1
29 + 8 + 1 = 38

But a better cutting is

6 6 2
17 + 17 + 5 = 39



Representation of the problem, and of an instance of the problem:

I n is the rod length. (Given)

I p is an array of prices, pi (or p[i ]) the price for a rod of length i . (Given)
I i1, i2, . . . ik is a way to cut up the rod, where

I k is the number of pieces the rod is cut into.
I i` is the length of a piece, where 1 ≤ ` ≤ k
I i1 + i2 + · · · + ik = n
I 1 ≤ k ≤ n
I k = 1 indicates no cuts at all
I k = n indicates cutting the rod into n pieces of unit length

In the previous example, i1 = 6, i2 = 6, i3 = 2.

I rn is the (best?) revenue for cutting a rod of length n, is calculated as

rn =
k∑

`=1

p[i [`]] =
k∑

`=1

pi`

I The solution is an array i of length k that maximizes r . (Solution to be returned)



An alternate formulation/representation is based on the position of cuts relative to the
end of the original rod.

i1 = 6 i2 = 6 i3 = 2
0 6 12 n = 14
j0 j1 j2 j3

j` =
∑̀
m=1

im = j`−1 + i`



From pg 362: We characterize the optimal substructure as

rn = max( pn
r1 + rn−1

r2 + rn−1
...
rx + rn−x
...
rn−1 + r1)



From pg 363: The näıve recursive version and why it’s bad.

T (n) = 1 +
n−1∑
j=0

T (j) = 2n

Verifying this using the substitution method (see Ex 15.1-1):

T (n) = 1 +
∑n−1

j=0 2j

= 1 + 1 + 2 + 4 + 8 + · · · + 2n−2 + 2n−1

= T (n − 1) + 2n−1

= 2n−1 + 2n−1

= 2 · 2n−1

= 2n



Why dynamic programming:

I Dynamic programming applies to optimization problems that have overlapping
subproblems.

I Dynamic programming avoid the bad running time of brute-force (“näıvely
recursive”) solutions by recording previously computed results in a table
(memoization)

The anatomy of the dynamic programming approach from the programmer’s
perspective (compare CLRS pg 359):

I Characterize the substructure: Determine what the subproblems are and how they
relate to the larger problem. (Determine the meaning of the tables.)

I Recursively define the problem.

I Devise an algorithm to populate the tables of subproblem solutions. (Find how
good the best way is.)

I Devise an algorithms to reconstruct a solution from the tables. (Find the best
way.)




