```
def findMissing(a):
    if a[0] != 0:
        return 0
    elif a[-1] == len(a) -1:
        return len(a)
    else :
        start = 0
        stop = len(a) - 1
    assert a[start] == start and a[stop] == stop + 1
    while stop > start + 1 :
        mid = (stop + start) / 2
        if a[mid] == mid :
            start = mid
        else :
            assert a[mid] == mid + 1
            stop = mid
        return stop
```

After i iterations,

```
start = 0
stop = len(a) - 1
while stop > start + 1 :
    mid = (stop + start) / 2
    if a[mid] == mid :
        start = mid
    else :
        stop = mid
```

(a) $a[$ start $]=$ start

Initialization. After 0 iterations, (a) and (b) are true by the conditions of the outer if/else chain. Moreover,

$$
\text { stop }- \text { start }=n=\frac{n}{1}=\frac{n}{2^{0}}=\frac{n}{2^{i}}
$$

Maintenance. Suppose the invariant holds after i iterations for some $i \geq 0$. By the precondition of the function, $a[\mathrm{mid}]=\operatorname{mid}$ or $a[\mathrm{mid}]=\operatorname{mid}+1$. Either way, the change to start and stop preserves the invariant.
Moreover,

$$
\text { mid }- \text { start }=\frac{\text { start }+ \text { stop }}{2}-\text { start }=\frac{\text { stop }- \text { start }}{2}=\frac{\frac{n}{2^{i}}}{2}=\frac{n}{2^{i+1}}
$$

After i iterations,

```
```

start = 0

```
```

start = 0
stop = len(a) - 1
stop = len(a) - 1
while stop > start + 1 :
while stop > start + 1 :
mid = (stop + start) / 2
mid = (stop + start) / 2
if a[mid] == mid :
if a[mid] == mid :
start = mid
start = mid
else :
else :
stop = mid

```
```

 stop = mid
    ```
```

(a) $a[s t a r t]=$ start

Termination. (Informally) The size of the range [start, stop) decreases by half each time, so after $\lg n$ iterations the range has size one and the loop stops.
(Formally) After $\lg n$ iterations, stop - start $=\frac{n}{2^{i}}=\frac{n}{2^{\underline{g} n}}=\frac{n}{n}=1$, and the guard failes.
After the loop terminates, stop $=s t a r t+1$. The loop invariant indicates that $a[s t a r t]=$ start but $a[$ stop $]=$ stop +1 . Hence stop is the correct result.

You are playing a computer game in which the hero must pass through a series of rooms and halls collecting treasure. There are $2 n$ rooms (in pairs) and $n-1$ halls interspersed between the pairs. Each room has a one-way door to the next hall, and each hall has two one-way doors to the rooms of the next pair. The hero must, therefore, pass through exactly one room in each pair.

Each room has a certain amount of treasure, $T_{i, j}$. Halls do not have treasure, but they each have a guardian who demands payment to let the hero cross diagonally through the hall. So, to move from $T_{i-1,0}$ to $T_{i, 0}$ is free, but to
 move from $T_{i-1,0}$ to $T_{i, 1}$ costs P_{i}.

Devise and implement an algorithm to find the route that yields the most treasure. Analyze its efficiency.

- $T_{i, j}$ be the amount of treasure in room i, j. (Given)
- P_{i} be the penalty for crossing the hall between the i th and $i+1$ st pair of rooms. (Given)
- $C_{i, j}$ be the most treasure than can be obtained on any route ending at room i, j. ("Scratch work")
- $D_{i, j}$ be the direction the hero should come from in order to get to room i, j with the most treasure. ("Scratch work")
- R be the route the hero should take, as a list indicating which side of the hall the hero should be on. (Solution to be returned)
Throughout, variable i ranges over $[0, n)$ and j ranges over $[0,2)$.

$$
C_{i, j}= \begin{cases}T_{i, j} & \text { if } i=0 \\ T_{i, j}+\max \left(C_{i-1, j}, C_{i-1, j+1 \% 2}-P_{i-1}\right) & \text { otherwise }\end{cases}
$$

DP goals in CSCl 345:

- Know what DP is and to what sort of problems it applies
- Be able to code up a table-populating algorithm when the recursive characterization is given to you.

DP goals in CSCl 445 :

- Be able to derive a recursive characterization to a given problem.
- Be able to code up a table-populating algorithm and an algorithm to reconstruct the optimal solution using the recursive characterization you have derived.

The rod-cutting problem (CLRS pg 360):
Given a table of prices for rods of different lengths and a rod (that is, a length), what is the most valuable way to cut up the rod into smaller rods?

Problem instance in the book:

| length | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| price | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
| density | 1 | 2.5 | 2.66 | 2.25 | 2 | 2.83 | 2.43 | 2.5 | 2.66 | 3 |

Problem instance changed slightly:

| length | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| price | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 29 |
| density | 1 | 2.5 | 2.66 | 2.25 | 2 | 2.83 | 2.43 | 2.5 | 2.66 | 2.9 |

Consider a given rod of length 14 . How should we cut it?
Using the greedy strategy (price-densest first), we would do

$$
\begin{array}{r}
10 \\
29+8+1=38
\end{array}
$$

But a better cutting is

$$
\begin{gathered}
6 \\
17
\end{gathered}+17+5=39
$$

Representation of the problem, and of an instance of the problem:

- n is the rod length. (Given)
- p is an array of prices, p_{i} (or $p[i]$) the price for a rod of length i. (Given)
- $i_{1}, i_{2}, \ldots i_{k}$ is a way to cut up the rod, where
- k is the number of pieces the rod is cut into.
- i_{ℓ} is the length of a piece, where $1 \leq \ell \leq k$
- $i_{1}+i_{2}+\cdots+i_{k}=n$
- $1 \leq k \leq n$
- $k=1$ indicates no cuts at all
- $k=n$ indicates cutting the rod into n pieces of unit length

In the previous example, $i_{1}=6, i_{2}=6, i_{3}=2$.

- r_{n} is the (best?) revenue for cutting a rod of length n, is calculated as

$$
r_{n}=\sum_{\ell=1}^{k} p[i[\ell]]=\sum_{\ell=1}^{k} p_{i \ell}
$$

- The solution is an array i of length k that maximizes r. (Solution to be returned)

An alternate formulation/representation is based on the position of cuts relative to the end of the original rod.

| $i_{1}=6$ | $i_{2}=6$ | $i_{3}=2$ |
| :--- | :--- | :--- |
| | 6 | 12 |
| 0 | j_{1} | |
| j_{0} | j_{2} | j_{3} |
| | $j_{\ell}=\sum_{m=1}^{\ell} i_{m}=j_{\ell-1}+i_{\ell}$ | |
| | | |
| | | |

From pg 362: We characterize the optimal substructure as

$$
\begin{aligned}
r_{n}=\max (& p_{n} \\
& r_{1}+r_{n-1} \\
& r_{2}+r_{n-1} \\
& \vdots \\
& r_{x}+r_{n-x} \\
& \vdots \\
& \left.r_{n-1}+r_{1}\right)
\end{aligned}
$$

From pg 363: The naïve recursive version and why it's bad.

$$
T(n)=1+\sum_{j=0}^{n-1} T(j)=2^{n}
$$

Verifying this using the substitution method (see Ex 15.1-1):

$$
\begin{aligned}
T(n) & =1+\sum_{j=0}^{n-1} 2^{j} \\
& =1+1+2+4+8+\cdots+2^{n-2}+2^{n-1} \\
& =T(n-1)+2^{n-1} \\
& =2^{n-1}+2^{n-1} \\
& =2 \cdot 2^{n-1} \\
& =2^{n}
\end{aligned}
$$

Why dynamic programming:

- Dynamic programming applies to optimization problems that have overlapping subproblems.
- Dynamic programming avoid the bad running time of brute-force ("naïvely recursive") solutions by recording previously computed results in a table (memoization)
The anatomy of the dynamic programming approach from the programmer's perspective (compare CLRS pg 359):
- Characterize the substructure: Determine what the subproblems are and how they relate to the larger problem. (Determine the meaning of the tables.)
- Recursively define the problem.
- Devise an algorithm to populate the tables of subproblem solutions. (Find how good the best way is.)
- Devise an algorithms to reconstruct a solution from the tables. (Find the best way.)

