Why dynamic programming:
» Dynamic programming applies to optimization problems that have overlapping
subproblems.

» Dynamic programming avoid the bad running time of brute-force (“naively
recursive) solutions by recording previously computed results in a table
(memoization)

The anatomy of the dynamic programming approach from the programmer’s
perspective (compare CLRS pg 359):

> Characterize the substructure: Determine what the subproblems are and how they
relate to the larger problem. (Determine the meaning of the tables.)

» Recursively define the problem.

» Devise an algorithm to populate the tables of subproblem solutions. (Find how
good the best way is.)

» Devise an algorithms to reconstruct a solution from the tables. (Find the best
way.)

A lumberjack has an k-yard long log of wood he wants cut at n specific places ji, jo,
... Jn, represented as the distance of that cut point from one end of the log. (We can
also consider the ends as trivial “cut points” jo = 0 and jp4+1 = k.) The sawmill
charges $x to cut a log that is x yards long (regardless of where that cut is). The
sawmill also allows the customer to specify the ordering and location of the cuts.

For example, if k = 20 and we want cuts at 3 yards, 6 yards, and 10 yards from the left
end, then if we cut them from left to right the cost would be

20 + (20 — 3) 4 (20 — 6) = 20 + 17 + 14 = 51

But making the same cuts from right to left would cost

20+10+6 =236

Devise and implement an algorithm to minimize the cost, and analyze its running time.

