
Why dynamic programming:

I Dynamic programming applies to optimization problems that have overlapping
subproblems.

I Dynamic programming avoid the bad running time of brute-force (“näıvely
recursive”) solutions by recording previously computed results in a table
(memoization)

The anatomy of the dynamic programming approach from the programmer’s
perspective (compare CLRS pg 359):

I Characterize the substructure: Determine what the subproblems are and how they
relate to the larger problem. (Determine the meaning of the tables.)

I Recursively define the problem.

I Devise an algorithm to populate the tables of subproblem solutions. (Find how
good the best way is.)

I Devise an algorithms to reconstruct a solution from the tables. (Find the best
way.)

A lumberjack has an k-yard long log of wood he wants cut at n specific places j1, j2,
. . . jn, represented as the distance of that cut point from one end of the log. (We can
also consider the ends as trivial “cut points” j0 = 0 and jn+1 = k.) The sawmill
charges $x to cut a log that is x yards long (regardless of where that cut is). The
sawmill also allows the customer to specify the ordering and location of the cuts.
For example, if k = 20 and we want cuts at 3 yards, 6 yards, and 10 yards from the left
end, then if we cut them from left to right the cost would be

20 + (20 − 3) + (20 − 6) = 20 + 17 + 14 = 51

But making the same cuts from right to left would cost

20 + 10 + 6 = 36

Devise and implement an algorithm to minimize the cost, and analyze its running time.

