

$$
\begin{aligned}
& i=\sqrt{-1} \\
& \mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}
\end{aligned}
$$

\mathbb{C} can be represented as $\mathbb{R} \times \mathbb{R}$.
$e^{\pi i}=-1$
An nth complex root of unity is $\omega \in \mathbb{C}$ such that $\omega^{n}=1$.

$$
\begin{aligned}
& n=3 \\
& 1^{3}=1 \\
& \left(e^{\frac{2 \pi i}{3}}\right)^{3}=\left(e^{\pi i}\right)^{2}=(-1)^{2}=1 \\
& \left(e^{\frac{4 \pi i}{3}}\right)^{3}=\left(e^{2 \pi i}\right)^{2}=(1)^{2}=1
\end{aligned}
$$

Moreover. . .

$$
\begin{aligned}
& e^{\frac{2 \pi i}{3}}=\cos \left(\frac{2}{3} \pi\right)+i \sin \left(\frac{2}{3} \pi\right)=-.5+.866 i \\
& e^{\frac{4 \pi i}{3}}=\cos \left(\frac{4}{3} \pi\right)+i \sin \left(\frac{4}{3} \pi\right)=-.5-.866 i
\end{aligned}
$$

$$
\begin{aligned}
& n=4 \\
& 1^{4}=1 \\
& i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1 \\
& (-1)^{4}=1 \\
& (-i)^{4}=\left(i^{2}\right)^{2}=1
\end{aligned}
$$

In general, the principal nth root of unity is $\omega_{n}=e^{\frac{2 \pi i}{n}}$
The n complex nth roots of unity are $\omega_{n}^{0}, \omega_{n}^{1}, \ldots, \omega_{n}^{n-1}$.
Note that $\omega_{n}=\omega_{n}^{1}$ and $\omega_{n}^{0}=\omega_{n}^{n}=1$.
Note also that $\omega_{n}^{k}=e^{\frac{2 \pi i}{n} k}=e^{\frac{2 k \pi i}{n}}=\cos \left(\frac{2 k \pi}{n}\right)+i \sin \left(\frac{2 k \pi}{n}\right)$

Cancellation lemma. $\omega_{d n}^{d k}=\omega_{n}^{k}$.
Proof. $\omega_{d n}^{d k}=\left(\omega_{d n}\right)^{d k}=\left(e^{\frac{2 \pi i}{d n}}\right)^{d k}=\left(e^{\frac{2 \pi i}{n}}\right)^{k}=\omega_{n}^{k} . \square$
Corollary to above. $\omega_{n}^{\frac{n}{2}}=\omega_{2}=-1$
Proof. Let m be such that $n=2 m$. Then $\omega_{n}^{\frac{n}{2}}=\omega_{2 m}^{m}=\omega_{2}=-1$. \square
Cancellation lemma rewritten. If d is a common divisor of n and k, then $\omega_{n}^{k}=\omega_{\frac{h}{d}}^{\frac{k}{d}}$.

