
Dynamic programming vs greedy algorithms

Both are for optimization problems that have optimal substructure.

How are they different:

I Greedy algorithms make decisions that are locally optimal

I Greedy algorithms tend to be simpler, more straightforward to write

I The hard part of greedy algorithms is determining whether an optimal greedy
solution exists

The activity selection problem (§16.1)

I Problem: S , the given, complete set of activities, {a1, a2, . . .}.
I Subproblem: Sij , the set of activities that fall between ai and aj .

I Solution to subproblem: Aij , a “maximal” (in terms of cardinality) subset of Sij

Claim (Theorem 16.1 in the book):

Let am be an activity with earliest finish time in Sk . There exists a maximal
solution to Sk that includes am.

Notation switch in the book: Sk = Skn, Ak = Akn.

Theorem 16.1. Let am be an activity with earliest finish time in Sk . There exists a
maximal solution to Sk that includes am.

Let Ak be a maximal solution to subproblem Sk .

Suppose am /∈ Ak

Let aj be the element in Ak with earliest finish time.

Consider the set (Ak − {aj}) ∪ {am}.

Since

fm ≤ fj
≤ sx

. . . for all ax ∈ Ak , am does not conflict with anything in (Ak − {aj}) ∪ {am}.

|(Ak − {aj}| = |Ak | − 1 + 1

= |Ak |

So (Ak − {aj}) ∪ {am} is also. maximal. 2

Elements of the greedy strategy

find 1. The optimal substructure

develop 2. A recursive solution

prove 3/4. The greedy choice a. One subproblem remains
b. It’s safe to pick a local optimum

develop 5. A recursive algorithm

convert to 6. An iterative algorithm

Ex 16.2-1. Suppose we have items 1 through n, with vi being the value of the whole
thing and wi being its weight. W is the capacity of the knapsack. Until the knapsack
is full, (a) choose the item with highest value density (vi

wi
) and take as much as will fit;

(b) repeat with subknapsack W − wi , assuming wi < W .
Claim: For a given instance of the problem, there is a solution using this greedy
approach.
Demonstration. Suppose A = (a1, a2, . . . an) is an optimal solution, indicated by the
weight taken from each item. It must be that a1 + a2 + . . . an ≤W , but assume that
the total weight is in fact equal to W , since you can always increase the knapsack’s
value by adding something more. The value of the solution is

n∑
k=1

ai
vi
wi

Suppose further that item m has the highest value density and that am < wm. (We’re
also assuming wm < W ; the argument would be basically the same otherwise, just a
little more complicated.)
Start removing items from the solution until you’ve removed wm − am weight, and
then add the rest of item m. Since item m has the highest density, you now have a
more valuable knapsack.

Ex 16.2-3. Always pick the smallest, most valuable one. This works because any
solution that did not have the smallest, most valuable one can be made more valuable
(without increaseing weight) by replacing one of the others with the smallest, most
valuable one.

Ex 16.2-4. Let A = {a1, a2, . . . an} be the locations of the drinking fountains in miles
from Grand Forks. (Let a0 = 0 be Grand Forks and let an+1 be Williston.) We will use
these distances to identify them. We want an optimal solution b1, b2, . . . bk , a list of
fountains to stop at.

Alternately, call that the set B0,n+1, and in general let Bi ,j be a minimal set of
fountains to stop at when leaving ai with a full bottle and arrive at aj ; the set is
“exclusive”—do not count ai or aj .

In all this, we’re assuming that we leave Grand Forks with a full bottle and that the
distance between fountains is always less than m.

To characterize the solution,

Bi ,j = min
i<k<j

|{ak} ∪ Bi ,k ∪ Bk,j |

Our main idea is always to choose the furthest fountain within m miles.

Best-Station(A, i , j) // precondition: i ≤ j ≤ m
if aj − ai < m

return ∅
k = i + 1
while ak − ai < m

k = k + 1
k = k − 1
return {ak} ∪Best− Station(A, k , j)

The top level call is to Best-Station(A, 0,m + 1).

Lemma
Throughout the algorithm, k > i .

Proof. Initially, k = i + 1 > i , and the loop only increases it. (Now the only
way this lemma could be false is if the loop doesn’t run at all and then we
subtract one from k, leaving k = i . The rest of the proof is to show that
doesn’t happen.)

The initial if statement of the algorithm guarantees that aj − ai ≥ m > 0.
so ai < aj , and so ai 6= am. Moreover, there exists a` such that a` > ai and
a` − ai < m, by assumption that I made above.

Hence the while loop will execute at least once, and so k ≥ i+2 on termination
of the while loop. By substitution, k ≥ i + 1 after the final assignment to k,
and so k > i . 2

Now, why is this optimal? We will prove that there exists an optimal solution to Bi ,j

that includes the futhest fountain within range.
Proof. Let ax be the furthest fountain within range, that is,

∀ a` ∈ Ai ,j , if a` − ai ≤ m then a` ≤ ax

Suppose Ci ,j is a minimal solution. Let c0 be the first fountain in Ci ,j . It must
be that c0 − ai ≤ m, or else it wouldn’t be a solution. So, either c0 = ax or
c0 < ax .

Case 1. Suppose c0 = ax . Done.
Case 2. Suppose c0 < ax . Then let C ′

i ,j = Ci ,j − {c0} ∪ {ax}. (We’re going
to proove that C ′

i ,j is an optimal solution.)

Clearly |C ′
i ,j | = |Ci ,j |, so, if it is a solution, it’s optimal. Let c1 be the next

station in Ci ,j after c0. c1 − c0 < m, or else Ci ,j would not be a solution.
c1 − ax < m, since c0 < ax . So C ′

i ,j is a solution.

Therefore, an optimal solution including ax exists. 2

