
Problem 4-2

a.1. Binary search, pass-by-pointer: T (n) = T
(
n
2

)
+ c for some c . In terms of n

(current problem size), this is Θ(lg n), and in terms of N (original problem size), this is
Θ(lgN).

a.2. Binary search, pass-by-copy whole array: T (n) = T
(
n
2

)
+ cN for some c . In

terms of n, the term cN acts as a constant, and this is Θ(lg n), with N as a hidden
constant factor. But in terms of N, this becomes Θ(N lgN)

a.3. Binary search, pass-by-copy subrange: T (n) = T
(
n
2

)
+ c n

2 for some c (or, we
could substitute d = c

2 to make dn). Using the master method, this is Θ(n), but in
terms of N, this becomes Θ(N).

Problem 4-2, continued

b.1. Merge-sort, pass-by-pointer: T (n) = 2T
(
n
2

)
+ cn for some c . (To be even more

precise, we could add a constant term d .) In terms of n, this is Θ(n lg n), which
becomes Θ(N lgN) in terms of N.
b.2. Merge-sort, pass-by-copy whole array: T (n) = 2T

(
n
2

)
+ cn + dN. Here we can

use the recursion-tree method to observe the effect of the dN term. Adding these
terms over levels in the tree gives us

dN + 2dN + 4dN + · · ·NdN = dN

lgN∑
i=0

2i ≈ dN2lgN = dN2

And hence, in terms of N, this is Θ(N2).
b.3. Merge-sort, pass-by-copy subrange: T (n) = 2T

(
n
2

)
+ cn, which is Θ(n lg n) in

terms of n, or Θ(N lgN) in terms of N.

Problem 4-5
a. Enumerate all pairings, of which there are n!. Consider a directed graph representing
each node as a chip and the “good” results as edges. The chips that are good will be
a strongly connected component. If more than n

2 are good, then the majority will be
that strongly connected component, and so the largest strongly connected component
will take up most of the chips. However, if less than n

2 are good, then the bad could
mimic the good and form a strongly connected component just as big.

b. Pair them up and test them. That will be bn2c halves. What we want to do is keep
a portion of them so as to retain the condition that a majority are good. When a pair
indicates each that the other is good, then either they are both good or both bad.
We’ll keep one of them (arbitrarily). Claim: If there are an even number of chips and
majority good, then the ones we keep will have a majority good.

Proof. Suppose there are an even number of chips with a majority good, and
we pair-up and eliminate as described.

Let a be the number of pairs of both (actually) good chips, b the number
that are a mix of good and bad, and c the number that are both (actually)
bad. Note that there are 2a + 2b + 2c chips in total, 2a + b good ones, and
b + 2c bad ones. there is a majority good ones, 2a + b > b + 2c , so a > c .

In a good/bad mixed pair, the good one will identify the bad one as bad, so
the number of pairs reporting that they’re both good is no more than a + c .
(That maximum would happen if in all the bad-bad pairs the bad chips lie for
each other.)

a good chips will be kept and at most c chips will be kept. Since a > c , the
chips kept are majority good. �

But what about the spare chip in the case of an odd number? This makes a difference
because it would be possible for that spare chip to be the good one that gives the
good majority:

Suppose we discard the spare chip. Suppose further that the chips are paired
as BB, GG, G, and the BB pair reports as GG. Then we keep one B and one
G, and we lose the G majority.
Suppose we keep the spare chip. Suppose further that the chips are paired as
GG, GG, BB, B, and the BB pair reports as GG. Then we keep two Gs and
two Bs, and we lose the G majority.

My solution. Have the other surviving chips vote. The other surviving chips have at
least 50% good (as shown in the previous paragraph). If the spare chip gets at least
50% of the vote, it’s good too. This exceeds bn2c comparisons, but is still linear.

Student solution. If there are an even number of surviving chips, keep the spare. If
there an an odd number of surviving chips, discard the spare.

From DMFP:

{ED} 3S 3

E 1 D 2

{SED} 6 A 7

K 1 C 1 L 1 V 1

N 6

{RU} 2 I 3

R 1 U 1

{RUI} 5

{SEDA} 13

{KC} 2 {LV} 2

{RUIN} 11

_ 4

{_KCLV} 8

{KCLV} 4

{_KCLVRUIN} 19

{SEDA_KCLVRUIN} 32

0

1

01 111 111 1101 10100 01

A N N I K A

original

text algorithm
encoding

key

encoded

text

()original

text algorithm
encoding

key−
generating
algorithm

key

encoded
text , key

Lemma 16.2, restated from CLRS pg 433:
Let x and y be characters in n alphabet with the lowest frequencies in the original text.
Then there exists an optimal prefix code for the alphabet (that is, optimal for the
original text) in which which the encodings of x and y have the greatest length.
Proof sketch. Let T be an optimal tree. Let a and b be characters represented by
sibling leaves of maximal depth. WOLOG, let a.freq ≤ b.freq and x .freq ≤ y .freq. By
how x , y , a, and b are chosen,

x .freq ≤ a.freq

y .freq ≤ b.freq

Let T ′′ be the prefix code like T except with x and a switched, y and b switched. Then

B(T)− B(T ′′) =
∑
c∈C

c .freq · dT (c)−
∑
c∈C

c .freq · dT ′′(c)

= (a.freq − x .freq)(dT (a)− dT (x))
+(b.freq − y .freq)(dT (b)− dT (y))

≥ 0 �

Lemma 16.3, summarized from CLRS pg 435:
Optimal trees have subtrees that are optimal for their corresponding subproblem.

Theorem 16.4, restated from CLRS pg 435:
Huffman trees are prefix codes that are optimal for the given original text.

Proof sketch. Let C be the alphabet of the text, augmented with character
frequencies. By induction on the structure of the tree produce by the Huffman
encoding.

Base case. Suppose C has only one character. Then there is only one possible tree for
that alphabet, so it must be optimal.

Inductive case. Suppose C has more than one character, and let x and y be the the
least frequent characters. Let C ′ be the alphabet like C but with x and y replaced
with pseudo-character z . By structural induction, the Huffman encoding produces a
tree that is optimal for C ′. By Lemma 16.3, we can replace leaf z in the optimal tree
for C ′ with a parent of siblings x and y to make a tree optimal for C . �

Solution to 16.3-2. Suppose T is a non-full prefix code binary tree. Let x be a node
with one child. Replace that node with its child; that reduces the depth of all
characters underneath by 1. Hence T was not optimal.

Solutiuon to 16.3-4. Claim: sum of the internal nodes’ combined frequencies equals
sum of the products of leaf frequencies and their depths. For example, consider this
tree:

200

a:45 55

3025

c:12 b:13

14 d:16

f:5 e:9

In this case, e’s 9 occurrences each take 4 bits. The 9 is counted four times.
For an internal node x , the sum of the internal nodes’ combined frequency of children
is equal to the sum of leaf frequencies times their depth from x .

Solutiuon to 16.3-4, continued.
Proof. By structural induction.
Base case: Suppose x is an internal node both of whose children, a and b, are leaves.
Then the combined frequency is

a.freq + b.freq = a.freq · 1 + b.freq · 1

. . . which is the leaf frequencies times their depths.
Inductive case 1: Suppose x is an internal node with one child being a leaf (a) and the
other being itself an internal node (c); suppose that the claim we’re making for the
entire tree is true for the subtree rooted at c . Let d be the combined frequency of c
and d ′ the sum of the combined frequencies of internal nodes under c . Let c1, . . . cm
be the leaves under c with depths (from c), c ′1, . . . c

′
m. Then the sum of the combined

frequencies under x is

a.freq + d + d ′ = a.freq + d + c ′1 · c1.freq + . . . c ′m · cm.freq by the ind hyp
= a.freq + c1 + ·+ cm+

+c ′1 · c1.freq + . . . + c ′m · cm.freq
= 1 · a.freq + (c ′1 + 1)c1.freq + . . . (c ′m + 1)cm.freq

The argument is similar in inductive case 2, where both children are themselves
internal nodes. �

