Formal definitions:

$$
\begin{aligned}
& \Theta(g(n))=\left\{f(n) \mid \exists c_{1}, c_{2}, n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\} \\
& O(g(n))=\left\{f(n) \mid \exists c, n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq f(n) \leq c g(n)\right\} \\
& \Omega(g(n))=\left\{f(n) \mid \exists c, n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq c g(n) \leq f(n)\right\} \\
& o(g(n))=\left\{f(n) \mid \forall c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq f(n)<c g(n)\right\} \\
& \omega(g(n))=\left\{f(n) \mid \forall c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{R}^{+} \text {such that } \forall n \geq n_{0}, 0 \leq c g(n)<f(n)\right\}
\end{aligned}
$$

$$
C_{m s}(n)= \begin{cases}0 & \text { if } n \leq 1 \\ n-1+2 C_{m s}\left(\frac{n}{2}\right) & \text { otherwise }\end{cases}
$$

The Master theorem (CLRS pg 94). Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be defined by the recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

where $a \geq 1$ and $b>1$.

- If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ for some $\epsilon>0$, then $f(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$
- If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$ and $a \cdot f\left(\frac{n}{b}\right)=O(f(n))$, then $T(n)=\Theta(f(n))$

Understanding the Master theorem:
The work done at the leaves is inherently $\Theta\left(n^{\log _{b} a}\right)$

$$
\begin{array}{cc}
\text { binary search } & \text { merge sort } \\
\begin{array}{c}
a=1 \quad b=2
\end{array} & a=2 \quad b=2 \\
1 \text { leaf } & n \text { leaves } \\
n^{\log _{2} 1}=n^{0}=1 & n^{\log _{2} 2}=n^{1}
\end{array}
$$

Understanding the Master theorem：
Imagine throwing away $\frac{1}{3}$ of the problem each time．
n

$a=1, b=\frac{3}{2}$ ，number of leaves：$n^{\log _{\frac{3}{2}} 1}=1$.

Understanding the Master theorem:
Imagine throwing away two quarters of the problem each time, keeping two (independent) quarters.

$a=2, b=4$, number of leaves: $n^{\log _{4} 2}=n^{\frac{1}{2}}$.

Understanding the Master theorem:
Imagine three overlapping subproblems, each with size $\frac{2}{3}$

$a=3, b=\frac{3}{2}$, number of leaves: $n^{\log _{\frac{3}{2}} 3} \approx n^{2.7}$.

Understanding the Master theorem:

Let a be the number of subproblems and b be the factor by which the subproblems are decreasing in size (size of subproblems are $\frac{n}{b}$). Then

- The number of leaves is $\Theta\left(n^{\log _{b} a}\right)$.
- Assuming a constant amount of work for each leaf, the work done at the leaves is $\Theta\left(n^{\left.\log _{b} a\right)}\right.$.
- Thus the total work done by the algorithm is $\Omega\left(n^{\log _{b} a}\right)$.

Understanding the Master theorem:

In the recursion tree, what dominates-the work at the root or at the leaves?

- If one clearly (polynomially) dominates, then the whole work is Θ of whichever it is.
- If they're asymptotically equivalent, then multiply the work at each level by the height of the tree, which is $\Theta(\lg n)$.
- Otherwise, you're out of luck.

Understanding the Master theorem-a less-formal, big-oh-only version:
If $T(n) \leq a T\left(\frac{n}{b}\right)+O\left(n^{d}\right)$, then

$$
T(n)=\left\{\begin{array}{lll}
O\left(n^{d} \lg n\right) & \text { if } a=b^{d} & \text { (same work at each level) } \\
O\left(n^{d}\right) & \text { if } a<b^{d} & \text { (root dominates) } \\
O\left(n^{\lg _{b} a}\right) & \text { if } a>b^{d} & \text { (leaves dominate) }
\end{array}\right.
$$

The Master theorem (CLRS pg 94). Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be defined by the recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

where $a \geq 1$ and $b>1$.

- If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ for some $\epsilon>0$, then $f(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$
- If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$ and $a \cdot f\left(\frac{n}{b}\right)=O(f(n))$, then

$$
T(n)=\Theta(f(n))
$$

The "regularity" condition, that is there exists c such that

$$
a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n)
$$

The amount of work at the next level needs to be "smaller" (asymptotically no bigger than) the work at the current level.

Ex. 4.5-1.

In each of these, $a=2, b=4 . n^{\log _{b} a}=n^{\log _{4} 2}=n^{\frac{1}{2}}$
a. $T(n)=2 T\left(\frac{n}{4}\right)+1$

$$
f(n)=1=O\left(n^{\log _{4} 2-\epsilon}\right)=O\left(n^{\frac{1}{2}-\epsilon}\right)
$$

where $\epsilon=\frac{1}{4}$, for example. hence $\Theta\left(n^{\frac{1}{2}}\right)$.
b. $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}$

$$
f(n)=\sqrt{n}=n^{\frac{1}{2}}=\Theta\left(n^{\frac{1}{2}}\right)
$$

So $\Theta\left(n^{\frac{1}{2}} \lg n\right)$

Ex. 4.5-1.

$a=2, b=4 . n^{\log _{b} a}=n^{\log _{4} 2}=n^{\frac{1}{2}}$
c. $T(n)=2 T\left(\frac{n}{4}\right)+n$

$$
f(n)=n=\Omega\left(n^{\frac{1}{2}+\epsilon}\right)
$$

where $\epsilon=\frac{1}{4}$, for example. So $\Theta(n)$.
d. $T(n)=2 T\left(\frac{n}{4}\right)+n^{2}$

$$
f(n)=n^{2}=\Omega\left(n^{\frac{1}{2}+\epsilon}\right)
$$

where $\epsilon=1$, for example. So $\Theta\left(n^{2}\right)$.

4-1.
a. $T(n)=2 T\left(\frac{n}{2}\right)+n^{4}$

Using the master method, $a=2, b=2$, and $f(n)=n^{4}=\Omega\left(n^{1+\epsilon}\right)$ where $\epsilon=2$. So, $\Theta\left(n^{4}\right)$.
Using the substitution method, guess cn^{4}. Then

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+n^{4} \\
& =2 c\left(\frac{n}{2}\right)^{4}+n^{4} \\
& =\frac{c}{8} n^{4} n^{4} \\
& =\left(\frac{c+8}{8}\right) n^{4}
\end{aligned}
$$

We need $\frac{c+8}{8}=c$, so $c=\frac{8}{7}$.

4-1.

b. Using the master method, $a=1, b=\frac{10}{7}$. Note that $\log _{\frac{10}{7}} 1=0$.
$f(n)=n=\Omega\left(n^{0+\epsilon}\right)$ where $\epsilon=\frac{1}{2}$. So, $\Theta(n)$.
Using the substitution method, guess cn . Then

$$
\begin{aligned}
T(n) & =T\left(\frac{7 n}{10}\right)+n \\
& =c\left(\frac{7}{10} n\right)+n \\
& =\frac{7 c+10}{10} n \\
\frac{7 c+10}{10} & =c \\
7 c+10 & =10 c \\
c & =\frac{10}{3}
\end{aligned}
$$

4.5-4. Can we use the Master method on $T(n)=4 T\left(\frac{n}{2}\right)+n^{2} \lg n$? No. $a=4, b=2, \log _{2} 4=2$. Note that $n^{2} \lg n=\Omega\left(n^{2}\right)$, but there does not exist ϵ such that $n^{2} \lg n=\Omega\left(n^{2-\epsilon}\right)$

