
Formal definitions:

Θ(g(n)) = {f (n) | ∃ c1, c2, n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)}

O(g(n)) = {f (n) | ∃ c , n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ f (n) ≤ c g(n)}

Ω(g(n)) = {f (n) | ∃ c , n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ c g(n) ≤ f (n) }

o(g(n)) = {f (n) | ∀ c ∈ R+, ∃ n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ f (n) < c g(n) }

ω(g(n)) = {f (n) | ∀ c ∈ R+,∃ n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ c g(n) < f (n) }

Cms(n) =

{
0 if n ≤ 1
n − 1 + 2Cms(n2) otherwise

2

1 1

2

1 1

2

1 1

n
2

n
2

n
4

n
4

n
4

n
4

n

n · 0

n − 1

n
2
· 1

4 · (n
4
− 1)

2 · (n
2
− 1)

The Master theorem (CLRS pg 94). Let T : N→ N be defined by the recurrence

T (n) = aT
(n
b

)
+ f (n)

where a ≥ 1 and b > 1.

I If f (n) = O(nlogb a−ε) for some ε > 0, then T (n) = Θ(nlogb a)

I If f (n) = Θ(nlogb a) for some ε > 0, then f (n) = Θ(nlogb a lg n)

I If f (n) = Ω(nlogb a+ε) for some ε > 0 and a · f
(
n
b

)
= O(f (n)), then

T (n) = Θ(f (n))

Understanding the Master theorem:

The work done at the leaves is inherently Θ(nlogb a)

binary search merge sort

a = 1 b = 2 a = 2 b = 2

1 leaf n leaves

nlog2 1 = n0 = 1 nlog2 2 = n1

Understanding the Master theorem:

Imagine throwing away 1
3 of the problem each time.

4
9n

n

2
3n

a = 1, b = 3
2 , number of leaves: n

log 3
2
1

= 1.

Understanding the Master theorem:

Imagine throwing away two quarters of the problem each time, keeping two
(independent) quarters.

1
16n

n

1
4n

1
4n

1
16n

1
16n

1
16n

a = 2, b = 4, number of leaves: nlog4 2 = n
1
2 .

Understanding the Master theorem:

Imagine three overlapping subproblems, each with size 2
3

2
3n

n

4
9n

4
9n

4
9n

a = 3, b = 3
2 , number of leaves: n

log 3
2
3
≈ n2.7.

Understanding the Master theorem:

Let a be the number of subproblems and b be the factor by which the subproblems are
decreasing in size (size of subproblems are n

b). Then

I The number of leaves is Θ(nlogb a).

I Assuming a constant amount of work for each leaf, the work done at the leaves is
Θ(nlogb a).

I Thus the total work done by the algorithm is Ω(nlogb a).

Understanding the Master theorem:

In the recursion tree, what dominates—the work at the root or at the leaves?

I If one clearly (polynomially) dominates, then the whole work is Θ of whichever it
is.

I If they’re asymptotically equivalent, then multiply the work at each level by the
height of the tree, which is Θ(lg n).

I Otherwise, you’re out of luck.

Understanding the Master theorem—a less-formal, big-oh-only version:

If T (n) ≤ aT (nb) + O(nd), then

T (n) =

O(nd lg n) if a = bd (same work at each level)

O(nd) if a < bd (root dominates)

O(nlgb a) if a> bd (leaves dominate)

The Master theorem (CLRS pg 94). Let T : N→ N be defined by the recurrence

T (n) = aT
(n
b

)
+ f (n)

where a ≥ 1 and b > 1.

I If f (n) = O(nlogb a−ε) for some ε > 0, then T (n) = Θ(nlogb a)

I If f (n) = Θ(nlogb a) for some ε > 0, then f (n) = Θ(nlogb a lg n)

I If f (n) = Ω(nlogb a+ε) for some ε > 0 and a · f
(
n
b

)
= O(f (n)), then

T (n) = Θ(f (n))

The “regularity” condition, that is there exists c such that

a · f
(n
b

)
≤ c · f (n)

The amount of work at the next level needs to be “smaller” (asymptotically
no bigger than) the work at the current level.

Ex. 4.5-1.

In each of these, a = 2, b = 4. nlogb a = nlog4 2 = n
1
2

a. T (n) = 2T (n4) + 1

f (n) = 1 = O(nlog4 2−ε) = O(n
1
2
−ε)

where ε = 1
4 , for example. hence Θ(n

1
2).

b. T (n) = 2T (n4) +
√
n

f (n) =
√
n = n

1
2 = Θ(n

1
2)

So Θ(n
1
2 lg n)

Ex. 4.5-1.

a = 2, b = 4. nlogb a = nlog4 2 = n
1
2

c. T (n) = 2T (n4) + n

f (n) = n = Ω(n
1
2
+ε)

where ε = 1
4 , for example. So Θ(n).

d. T (n) = 2T (n4) + n2

f (n) = n2 = Ω(n
1
2
+ε)

where ε = 1, for example. So Θ(n2).

4-1.
a. T (n) = 2T (n2) + n4

Using the master method, a = 2, b = 2, and f (n) = n4 = Ω(n1+ε) where ε = 2. So,
Θ(n4).
Using the substitution method, guess cn4. Then

T (n) = 2T (n2) + n4

= 2c(n2)4 + n4

= c
8n

4n4

= (c+8
8)n4

We need c+8
8 = c , so c = 8

7 .

4-1.
b. Using the master method, a = 1, b = 10

7 . Note that log 10
7

1 = 0.

f (n) = n = Ω(n0+ε) where ε = 1
2 . So, Θ(n).

Using the substitution method, guess cn. Then

T (n) = T (7n10) + n

= c(7
10n) + n

= 7c+10
10 n

7c+10
10 = c

7c + 10 = 10c

c = 10
3

4.5-4. Can we use the Master method on T (n) = 4T (n2) + n2 lg n?
No. a = 4, b = 2, log2 4 = 2. Note that n2lg n = Ω(n2), but there does not exist ε
such that n2lg n = Ω(n2−ε)

