§4.3. Extensions to Turing machines
P The extensions to Turing machines don't change the model's power

» These extensions make certain results easier

Why add multiple tapes to a Turing machine?

P It's interesting that it adds no power
> Sometimes it's easier to use

» Theorem 4.4.2, reducing a RAM to a (k + 3)-tape machine
» Theorem 4.5.1, reducing a nondeterministic Turing machine to a 3-tape machine



Theorem 4.3.1. What can be done with k tapes can be done with one tape, and the
one-tape machine is (no worse than) O(t(|x| + t).

> Make the alphabet of the
constructed one-tape
machine to be 2k-tuples

» For each single step in
the original, there are two

phases
» Scan to plan
> Act
o F = = E



§4.4. Random access Turing machines (RATMs or RAMs)

Definition 4.4.1: A RATM is a pair M = (k, ), where k is the number of registers
and I is a list of instructions.

A configuration is a k + 2 tuple, (k, Ro, R1,... Rk—1, T). Note that s, the program
counter, is the Greek kappa.

Theorem 4.4.1: Any recursive or recursively enumerable language, and any recursive
function, can be decided, semidecided, and computed, respectively, by a random access
Turing machine.

Theorem 4.4.2: Any language decided or semidecided by a random access Turing
machine, and any function computable by a random access Turing machine, can be
decided, semidecided, and computed, respectively, by a standard Turing machine in
polynomial steps.



Theorem 4.4.2: Any language decided or semidecided by a random access Turing

machine,

and any function computable by a random access Turing machine, can be

decided, semidecided, and computed, respectively, by a standard Turing machine in
polynomial steps.
Proof sketch.

>

vvyyvyy

One tape for input

One tape for the store

k tapes for registers

One tape as “scratch space”

One tape to rule them all, one tape to find them, one tape to bring
them all and in the darkness bind them.

In the land of Mordor, where the Turing machine lies.



§4.5. Nondeterministic Turing machines

Three ways to think of nondeterminism: Oracular knowledge, Searching with
back-tracking, and bifurcation.

Decision and semidecision for nondeterministic Turing machines

Decide For all computations the machine must halt
(For w there exists a finite bound N on the
length of any computation)

Forall we L there exists a computation that halts y
(Some may halt n)
Forallw¢ L no computations halt y

(All computations halt n)

Semidecide Some computations may not halt

Forallwe L there exists a computation that halts
Forall w¢ L no computations halt



Prob 4.5.1.a
Consider the regular expression to be broken up in the following phases:

ax a b bx b a ax
N
1 2 3 4 5 6 7

Consider those phases states. Then we can make the Turing machine as

(1,a,1,-) (1,a,2,-)
(2,a,3,-) (3,b,4,-)
(4,b,4,-) (4,b,5,-)
(5,b,6,-) (6,a,7,—)
(7,a,7,-) (7,U, h,)



Prob 4.5.1.b

/a—.cgag.dg
> R
~. b b
o CR 4>ch
)
d a, b
Y~d
RI__a ya
B CR ;»dLC ]




Theorem 4.5.1: If a nondeterministic Turing machine M semidecides or decides a
language, or computes a function, then there is a standard Turing machine M’ that
semidecides or decides the language or computes the function, respectively.
Proof sketch. (Main idea: simulate all computations until you get a halt, if
ever.)
At a given step, there are a fine number of steps the machine can make next.
Suppose the configuration is (q, uav). Then the next step considers only q and
a, but is drawn from K x (XU{«, —}), of which there are at most |K|(|Z|+2)
(call this r) possibilities.
In the worst case, each state/symbol pair has exactly r possibilities, of which
we arbitrarily pick one.



Define machine M" with three tapes: the original input, the simulated M input,
and the hint tape.

Algorithm:  Copy input onto the simulated tape
Put 1 onto the hint tape
L:  Operate like My

If you ever halt, then great!

If you run out of hints, then
Copy the original input back to the simulated tape
Put the "lexicographically next” hint on the hint tape
Goto L



