
§6.4. The class NP defined

Our aspiration: We want to identify problems that are not in class P.

We suspect Ham-Cycle, TSP, Indep-Set, Partition, SAT, and 3-SAT are not in class P.
They all happen to be in class NP.

A language L is in class NP if there exists a nondeterministic Turing machine M such
that

I All computations are bounded by a polynomial in the size of the input (and hence
halt)

I There are no false positives:
If w /∈ L then all computations of M on w halt n

I There may be some false negatives, but there must be at least one true positive
If w ∈ L, then ∃ a computation of M on w that halts y

LP pg 293



Notice how cleverly the nodeterministic “algorithms” of [Examples 6.4.(1&2)]
exploit the fundamental asymmetry in the definition of nondeterministic time-
bounded computation. They try out all possible solutions to the problem in
hand in independent computations, and accept as soon as they discover one
that works—oblivious of the others that do not. LP pg 295

I P ⊆ NP, just as R ⊆ RE .

I P ⊆ EXP, but P 6= EXP.
(since E ∈ EXP but E /∈ P, Theorem 6.1.2)

I NP ⊆ EXP. (Theorem 6.4.1)

I These imply that P ⊆ NP ⊆ EXP,
but also that P = NP and NP = EXP cannot both be true.

I We don’t know whether P 6= NP or NP 6= EXP (possibly both are true).



Alternative definition of NP:

L ∈ NP if there exists a Turing machine M such that for all w ∈ L there
exists a string y such that |y | is polynomial in |w | and M computes whether
w ∈ L in polynomial time when given w ; y as input.

y is a succinct certificate.

CLRS’s definition of class NP:

The complexity class NP is the class of languages that can be verified by a
polynomial-time algorithm. More precisely, a language L belongs to NP if and
only if there exist a two-input polynomial-time algorithm A and a constant c
such that

L = {x ∈ {0, 1}* | ∃ a certificate y with |y | = O(|x |c)
such that A(x , y) = 1}

We say that algorithm A verifies language L in polynomial time. CLRS pg 1064



Garey and Johnson, Computers and Intractability, Freeman, 1979; pg 2



Garey and Johnson, Computers and Intractability, Freeman, 1979; pg 2



Garey and Johnson, Computers and Intractability, Freeman, 1979; pg 3



Revisiting the nature of a reduction:

I A reduction from A to B uses a solution to B to build a solution to A.
“If we can solve B [within constraints], then we can solve A [within analogous
constraints].”

I To show a polynomial reduction from L1 to L2 requires us to
I Describe a function τ from L1-candidates to L2-candidates
I Show that τ is computed in polynomial time.
I Show that ∀ x ∈ L1-candidates, x ∈ L1 iff τ(x) ∈ L2.

So the reduction turns an instance of “problem” L1 to an instance of “problem”
L2.

I A reduction from A to B is evidence that B is at least as hard as A.



We need to show there exists a Hamiltonian cycle in G = (V ,E ) iff there exists a
satisfying truth assignment to the formula.

Proof (⇒) Suppose T satisfies the formula. Then for each vi ∈ V (that is,
each i ∈ [1, n]), exactly one xij is true. For each j ∈ [1, n] (that is, for each
position in the cycle), exactly one xij is true. If xij and xkj+1 are both true,
then (vi , vk) ∈ E.

(⇐) Conversely, suppose there exists a Hamiltonian cycle for G. Then the
truth assignment T where T (xij) = > iff vi is in the jth position in the cycle
satisfies the formula. �



This is bad news for SAT.

I If we could solve SAT in polynomial time [or any other time category], then we
could solve HamCycle in polynomial time [or whatever category]

I If we prove HamCycle can’t be solved in polynomial time, then SAT also can’t.

I If we prove SAT can’t be done in polynomial time, then the story still isn’t over
for HamCycle.



Example 7.1.2: Reducing Knapsack to Partition

Knapsack: Given a set S of n integers and capacity k, is there [find] a subset of S that
sum exactly to k?
Partition: Given a set S of n integers, can they be partitioned exactly in half (in terms
of their sum)?

Let S = {a1, a2, . . . a3}, k be an instance of Knapsack.

Let H = 1
2

∑
ai∈S ai and make set S2 = S ∪ {2H + 2k , 4H}. This is an instance of

Partition.
Suppose a partition exists for S2, call it P ∪ {4H} and (S − P) ∪ {2H + 2k} for some
P ⊆ S . Then

4H +
∑

ai∈P ai = 2H + 2k +
∑

ai∈S−P ai
4H + 2

∑
ai∈P ai = 2H + 2k +

∑
ai∈S ai = 2H + 2k + 2H = 4H + 2k∑

ai∈P ai = k

And so P is our solution to Knapsack.

Conversely, suppose there exists P ⊆ S , a solution to Knapsack, that is,
∑

ai∈P ai = k .
Work backwards algebraically . . .


