

Definition 6.1.1: A Turing machine M is polynomially bounded if

∃ p(n), a polynomial function such that
∀ x ∈ Σ*

∀ C ∈ (set of configurations), either
C is unreachable from (s, .tw), or
(s, .tw) `kM C , where k ≤ p(|x |)

A language is polynomially decidable if

∃ M, a Turing machine that decides the language, such that
∃ p(n), a polynomial function such that
∀ x ∈ Σ*

∀ C ∈ (set of configurations), either
C is unreachable from (s, .tw), or
(s, .tw) `kM C , where k ≤ p(|x |)

LP pg 276

.

§6.2. The class of polynomially decidable languages is denoted P. Why is polynomial
time used as a measure of tractability/feasibility?

Scott Adams, 1994

Reachability. Given a graph G and vertices vi and vj , find a path from vi to vj .

Language version: Does there exist a path from vi to vj?

{κ(G)b(i)b(j) | ∃ path in G from vi to vj}

One of the main points that will emerge from the discussion that follows is
that the precise details of encodings rarely matter.

Since it is easy to see that m = O(n3) , this is yet another inconsequential
inaccuracy, one that will not interfere with the issues that we deem important.
LP pg 280

Euler cycle. Given a graph G , is there a closed path (cycle) that uses each edge
exactly once? (Repeated vertices are okay.)

{κ(G) | ∃ a cycle that uses each edge exactly once}

Euler’s result: A graph has an Euler cycle if all non-isolated pairs are reachable and
each node’s in-degree equals its out-degree.

Hamiltonian Cycle. Given a graph G , is there a cycle that passes through each vertex
exactly once? (Unused edges are okay.)

{κ(G) | ∃ a cycle that visits each vertex exactly once}

Despite the superficial similarity between the two problems, Euler Cycle and
Hamiltonian Cycle, there appears to be a world of difference between them.
After one and a half centuries of scrutiny by many talented mathematicians,
no one has discovered a polynomial algorithm for Hamiltonian Cycle.
LP pg 282

Traveling Salesman. Given a complete weighted graph, find a simple cycle with with
least weight.

Optimization version: Given n ∈ N and an n × n distance matrix di ,j , and letting π

range over permutations of {1, 2, . . . n}, define c(π) =
(∑n−1

i=1 dπ(i),π(i+1)

)
+ dπ(n),π(1)

Find pi to minimize c(π).

Budgeted version: Given n ∈ N, an n× n distance matrix di ,j , and B ∈W, and using π
and c(π) as above, find a permutation pi such that c(π) ≤ B.

Language version:

{(n, di ,j ,B) | ∃ π such that c(π) ≤ B}

Independent Set. Given an undirected graph G = (V ,E), find a maximal set of
vertices C ⊆ V such that for all vi , vj ∈ C , (vi , vj) /∈ E .

Language version: Does an independent set of a given goal size exist?

{(κ(G),K) | ∃ C ⊆ V such that |C | ≥ K and ∀ vi , vj ∈ C , (vi , vj) /∈ E}

. . . yet another simply stated problem for which, despite prolonged and intense
interest by researchers, no polynomial-time algorithm has been found. LP pg 283

Clique. Given an undirected graph G = (V ,E), find a maximal set of vertices C ⊆ V
such that for all vi , vj ∈ C , (vi , vj) ∈ E .

Language version: Does a clique of a given goal size exist?

{(κ(G),K) | ∃ C ⊆ V such that |C | ≥ K and ∀ vi , vj ∈ C , (vi , vj) ∈ E}

Node Cover. Given an undirected graph G = (V ,E), find a minimal set of vertices
C ⊆ V such that for every edge in E , at least one endpoint of E is in C .

Language version: Does a cover of a give budget size exist?

(κ(G),B) | ∃ C ⊆ V such that |C | ≤ B and C covers all edges in E}

We can think of the [vertices] of an undirected graph as the rooms of a museum,
and each edge as a long straight corridor that joins two rooms. Then the Node
Cover problem may be useful in assigning as few guards as possible to the
rooms, so that all corridors can be seen by a guard. LP pg 284

Integer Partition. Given a set of whole numbers {a1, a2, . . . an}, find a subset indexed
by P ⊆ Nn such that

∑
i∈P ai =

∑
i∈Nn−P ai .

Language version: Does a two-set partition of a given set exist with equal sums?

{S | ∃ A ⊆ S such that
∑
a∈A

a =
∑

b∈S−A
b}

An algorithm exists (pg 285), but is it polynomial?

Boolean Satisfiability (SAT) and family

A literal is an occurrence of a variable or its negation: x or ∼ x

A clause is a disjunction of literals: x1 ∨ x2∨ ∼ x3

A formula is a conjunction of clauses: (x1∨ ∼ x2 ∨ x3) ∧ (x2 ∧ x4∧ ∼ x5)

A truth assignment is a mapping from variables to {>,⊥}
A truth assignment satisfies a formula is ∀ clauses ∃ a true literal

The Satisfiability problem is, given a formula, does a satisfying truth assignment exist?

2-SAT: Given a formula in which each clause has no more than two literals . . .

3-SAT: Given a formula in which each clause has no more than three literals . . .

Claim: This algorithm produces a satisfying truth assignment iff one exists.

Proof. (⇒) [If the algorithm returns a truth assignment, that assignment
indeed satisfies the given formula.]

In the original/initial call to purge, any individual variable assignment that
results must be part of any satisfying truth assignment, since the formula
cannot be satisfied without the variable assignments done by purge.

Invariant for the main loop: The (partial) assignment to the variables is part
of a satisfying (complete) truth assignment, iff one exists.

Initialization: Implied by what is said above.

Maintenance: Suppose the partial assignment at the beginning of an iteration
is part of a complete satisfying truth assignment. This iteration assigns to one
variable. If that assignment were not part of a CSTA that also includes the
current partial assignment, it would be rejected by the call to purge. Hence
the updated partial assignment is also part of a CSTA.

Termination. There is at most one iteration for each variable. Since there are
a finite number of variables, the loop terminates. When the loop terminates,
all variables are assigned, and, by the loop invariant, that assignment is “part
of” a CSTA. There fore the assignment is a CSTA.

(⇐) [If a truth assignment exists, the algorithm returns one.]

Suppose a truth assignment exists, and suppose the algorithm doesn’t find
one. From that we can derive a contradiction. �

Why don’t the polynomial-time algorithms for 2-SAT work for 3-SAT?

The purge routine is based on the premise that if a guess doesn’t fail, then it is safe.

(∼ x1 ∨ x2∨ ∼ x3) ∧ (∼ x1∨ ∼ x2∨ ∼ x3) ∧ (∼ x1 ∨ x2 ∨ x3) ∧ (∼ x1∨ ∼ x2 ∨ x3)

What if we guess x: = >?

