
Why study quick sort in light of the facts that

I you’ve seen it in earlier courses

I other sorts (counting sort, radix sort, merge sort, Tim sort) beat it under some
circumstances

?

Because

I It’s a beautiful algorithm.

I It’s a good context in which to apply what we’ve done recently.

I This chapter has some really good exercises and problems in it.

I There is a nifty side note I want to show you.



start i j stop

≤ pivot > pivot unsearched

Invariant (partition())

(a) ∀ k ∈ [start, i ],A[k] ≤ pivot

(b) ∀ k ∈ (i , j),A[k] > pivot

(c) A[stop− 1] = pivot

(d) j − start is the number of iterations



Invariant (partition())

(a) ∀ k ∈ [start, i ],A[k] ≤ pivot

(b) ∀ k ∈ (i , j),A[k] > pivot

(c) A[stop− 1] = pivot

(d) j − start is the number of iterations

Initialization. Before the loop starts, a and b are trivial, and c is true by
assignment. Moreover, j − start = 0, so d.
Maintenance. Suppose the invariant holds after some ` iterations.
On the `+ 1st iteration, either Aold[j ] ≤ pivot or Aold[j ] > pivot.
Case 1. Suppose Aold[j ] ≤ pivot. Then

inew = iold + 1
Anew[inew] = Aold[jold] ≤ pivot

Anew[jnew − 1] = Aold[jold] = A[inew]
= A[iold + 1] > pivot



Invariant (partition())

(a) ∀ k ∈ [start, i ],A[k] ≤ pivot

(b) ∀ k ∈ (i , j),A[k] > pivot

(c) A[stop− 1] = pivot

(d) j − start is the number of iterations

[Continued. . . ]
On the `+ 1st iteration, either Aold[j ] ≤ pivot or Aold[j ] > pivot.
Case 2. Suppose Aold[j ] > pivot. Then

A[jnew − 1] = A[jold] > pivot

In either case, jnew − start = jold + 1− start = `+ 1. �



Ex 7.2-3. Not-quite-right solution. Find the error.
Recursion Invariant. For each call to quicksort r() on the range [start, stop), A is
backward sorted on the range.

Proof. By induction on the structure of the recursive calls to
quicksort r().
Initialization. This is given, that is, that the initial array is backwards sorted.
Maintenance. Suppose the current subarray—the input to the call of
quicksort r() is backwards sorted.. The pivot will be the smallest element.
This means the less-than-the-pivot section will be empty, and the
greater-than-the-pivot section will have no exchanges and hence is still
backwards-sorted. quicksort r() will be called on that subarray.


