Why study quick sort in light of the facts that

- you've seen it in earlier courses
- other sorts (counting sort, radix sort, merge sort, Tim sort) beat it under some circumstances

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

?

Because

- It's a beautiful algorithm.
- It's a good context in which to apply what we've done recently.
- > This chapter has some really good exercises and problems in it.
- There is a nifty side note I want to show you.

start	i		j	stop
\leq pivot		> pivot	unsearched	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Invariant (partition())

- (a) $\forall \ k \in [\texttt{start}, i], A[k] \leq \texttt{pivot}$
- (b) $\forall \ k \in (i,j), A[k] > \texttt{pivot}$
- (c) A[stop 1] = pivot
- (d) j start is the number of iterations

Invariant (partition())

- (a) $\forall k \in [\texttt{start}, i], A[k] \leq \texttt{pivot}$
- (b) $\forall \ k \in (i,j), A[k] > \texttt{pivot}$
- (c) A[stop 1] = pivot
- (d) j start is the number of iterations

Initialization. Before the loop starts, a and b are trivial, and c is true by assignment. Moreover, j - start = 0, so d. **Maintenance.** Suppose the invariant holds after some ℓ iterations. On the $\ell + 1$ st iteration, either $A_{old}[j] \leq \text{pivot}$ or $A_{old}[j] > \text{pivot}$. **Case 1.** Suppose $A_{old}[j] \leq \text{pivot}$. Then

$$egin{array}{rcl} i_{new}&=&i_{old}+1\ A_{new}[i_{new}]&=&A_{old}[j_{old}]&\leq& ext{pivot}\ A_{new}[j_{new}-1]&=&A_{old}[j_{old}]&=&A[i_{new}]\ &=&A[i_{old}+1]&>& ext{pivot} \end{array}$$

Invariant (partition())

- (a) $\forall k \in [\texttt{start}, i], A[k] \leq \texttt{pivot}$
- (b) $\forall \ k \in (i,j), A[k] > \texttt{pivot}$
- (c) A[stop 1] = pivot
- (d) j start is the number of iterations

[Continued...] On the $\ell + 1$ st iteration, either $A_{old}[j] \leq \text{pivot}$ or $A_{old}[j] > \text{pivot}$. Case 2. Suppose $A_{old}[j] > \text{pivot}$. Then

$$A[j_{new}-1] = A[j_{old}] > pivot$$

In either case, $j_{new} - \texttt{start} = j_{old} + 1 - \texttt{start} = \ell + 1$. \Box

Ex 7.2-3. Not-quite-right solution. Find the error.

Recursion Invariant. For each call to quicksort_r() on the range [*start*, *stop*), A is backward sorted on the range.

Proof. By induction on the structure of the recursive calls to $quicksort_r()$. **Initialization.** This is given, that is, that the initial array is backwards sorted. **Maintenance.** Suppose the current subarray—the input to the call of $quicksort_r()$ is backwards sorted.. The pivot will be the smallest element. This means the less-than-the-pivot section will be empty, and the greater-than-the-pivot section will have no exchanges and hence is still backwards-sorted. quicksort_r() will be called on that subarray.