Why study quick sort in light of the facts that

> you've seen it in earlier courses
» other sorts (counting sort, radix sort, merge sort, Tim sort) beat it under some
circumstances

Because

> It's a beautiful algorithm.
> It's a good context in which to apply what we've done recently.
» This chapter has some really good exercises and problems in it.

» There is a nifty side note | want to show you.

start i J
’ < pivot \ > pivot \ unsearched \ ‘

Invariant (partition())

stop

(a) V k € [start,], A[k] < pivot
(b) ¥V k € (i,)),Alk] > pivot

(c) A[stop — 1] = pivot

(d)

d) j — start is the number of iterations

Invariant (partition())

(a) V k € [start,i], Alk] < pivot
(b) Y k € (i,)), A[k] > pivot

(c) A[stop — 1] = pivot
(d)

d) j — start is the number of iterations

Initialization. Before the loop starts, a and b are trivial, and c is true by
assignment. Moreover, j — start =0, so d.
Maintenance. Suppose the invariant holds after some { iterations.

On the (+ 1st iteration, either Ao4lj] < pivot or Asulj] > pivot.
Case 1. Suppose Aoi4lj] < pivot. Then

Inew = loid+1
Anew[inew] = Aold[jold] < pivot
AnewUneW -]-] = Aoldljold] = A[inew]
= A[io/d + 1] > pivot

Invariant (partition())

a) V k € [start, /], A[k] < pivot
b) V k € (i,j), Alk] > pivot
)
)

c) Alstop — 1] = pivot

(
(
(
(

d) j — start is the number of iterations

[Continued. . . |
On the { + 1st iteration, either Ao4j] < pivot or Asulj] > pivot.
Case 2. Suppose Aoi4lj] > pivot. Then

AU,,eW - 1] = AUold] > pivot

In either case, jnew — start = joiy+ 1 —start =¢+1. [J

Ex 7.2-3. Not-quite-right solution. Find the error.
Recursion Invariant. For each call to quicksort_r() on the range [start, stop), A is
backward sorted on the range.

Proof. By induction on the structure of the recursive calls to
quicksort_r().

Initialization. This is given, that is, that the initial array is backwards sorted.
Maintenance. Suppose the current subarray—the input to the call of
quicksort_r() is backwards sorted.. The pivot will be the smallest element.
This means the less-than-the-pivot section will be empty, and the
greater-than-the-pivot section will have no exchanges and hence is still
backwards-sorted. quicksort_r() will be called on that subarray.

