
Big “morals” of §4.(1 & 2)

I Many problems have good divide and conquer solutions. The running time of a
divide and conquer algorithm can be captured by a recurrence. So, let’s make sure
we can do recurrences.

I Sometimes it’s divide-and-conquer even when it doesn’t seem like it is.

I “Solving” a recurrence means finding an equivalent non-recursive formula.



“Normal” math induction:

“Normal” math induction:
I (0)
I (n)→ I (n + 1)

∴ ∀ n ∈ N, I (n)

“Strong” math induction:
I (0)
(∀ i ≤ n, I (i))→ I (n + 1)

∴ ∀ n ∈ N, I (n)



Elements of recurrences (things to look for in making a good guess):

I The coefficient of the recursive application (number of subproblems)

I The divisor of n in the recursive application (size of subproblems)

I The non-recursive terms



Ex. 4.3-1. T (n) = T (n − 1) + n. Guess T (n) ≤ c · n2. Then

T (n) ≤ c(n − 1)2 + n

= cn2 − 2cn + c + n

= cn2 + (1− 2c)n + c

≤ cn2

The last step holds as long as

(1− 2c)n + c ≤ 0

(2c − 1)n ≥ c

n ≥ c
2c−1

The recurrence holds so long as c > 1
2 and n0 >

c
2c−1 .
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4.3-2. T (n) = T (dn2e) + 1. First attempt. Guess T (n) ≤ c lg n

T (n) ≤ c lgdn2e+ 1

≤ c lg(n2 + 1
2) + 1

= c lg(n+1
2 ) + 1

= c(lg(n + 1)− lg 2) + 1

= c(lg(n + 1)− 1) + 1

= c lg(n + 1)− c + 1

We would need this to be less than c lg n . . .
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4.3-2. T (n) = T (dn2e) + 1. Try again. This time, guess T (n) ≤ c lg(n − b).

T (n) ≤ c lg(dn2e − b) + 1

≤ c lg(n2 + 1
2 − b) + 1

= c lg(n+1−2b
2 ) + 1

= c(lg(n + 1− 2b)− lg 2) + 1

= c lg(n + 1− 2b)− c + 1

≤ c lg(n − b)

The last part holds if n + 1− 2b ≤ n − b, so b ≥ 1; and if −c + 1 ≤ 0, so c ≥ 1.



4.3-6. T (n) = 2T (bn2c+ 17) + n. Guess cn lg n. Then

T (n) = 2T (bn2c+ 17) + n

≤ 2c(bn2c+ 17) lg(bn2c+ 17) + n

≤ 2c(n2 + 17) lg(n2 + 17) + n

= c(n + 34)(lg(n + 34)− 1) + n

= cn lg(n + 34)− cn − c34 + n

This isn’t working out.
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4.3-6. T (n) = 2T (bn2c+ 17) + n. Try again, this time guess c(n − 34) lg(n − 34).

T (n) = 2T (bn2c+ 17) + n

≤ 2c(bn2c+ 17− 34) lg(bn2c+ 17− 34) + n

≤ 2c(n2 + 17− 34) lg(n2 + 17− 34) + n

= c(n − 34) lg(n−34
2 ) + n = c(n − 34)(lg(n − 34)− 1) + n

= c(n − 34) lg(n − 34)− cn + 34c + n ≤ c(n − 34) lg(n − 34)

The last step holds if −cn + 34c + n ≤ 0.

cn − 34c ≤ n

c ≥ n
n−34

Notice that as n gets bigger, the ratio gets closer to 1, but will always be slightly
bigger. Pick c = 2. Then we need 2n − 68 ≥ n, or n ≥ 68.



4.3-9. T (n) = 3T (
√
n) + lg n. Let m = lg n, n = 2m. Then define

S(m) = T (2m)

= 3T (2
m
2 ) + lg 2m

= 3T (2
m
2 ) + m

= 3S(m2 ) + m

What do you do with that? Guess cm lgm, on the intuition of its similarity to
mergesort.

= 3c m
2 lg m

2 + m

= 3
2cm lgm − 3

2cm + m

This isn’t working out. In fact, the complexity class is wrong.
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Cms(n) =

{
0 if n ≤ 1
n − 1 + 2Cms(n2 ) otherwise
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4.3-9. T (n) = 3T (
√
n) + lg n. Again, let m = lg n, n = 2m, and S(m) = 3S(m2 ) + m.

Then guess mlg 3 − m
2 . (Of course.)

S(m) = 3S(m2 ) + m

= 3((m2 )lg 3 − m
2 ) + m

= 3mlg 3

2lg 3 − 3
2m + m

= 3mlg 3

3 + −3+2
2 m

= mlg 3 − m
2

So, S(m) = Θ(mlg 3) = Θ((lg n)lg 3).


