Big "morals" of $\S 4 .(1 \& 2)$

- Many problems have good divide and conquer solutions. The running time of a divide and conquer algorithm can be captured by a recurrence. So, let's make sure we can do recurrences.
- Sometimes it's divide-and-conquer even when it doesn't seem like it is.
- "Solving" a recurrence means finding an equivalent non-recursive formula.
"Normal" math induction:
"Normal" math induction:

$$
\begin{aligned}
& I(0) \\
& I(n) \rightarrow I(n+1) \\
\therefore \quad & \forall n \in \mathbb{N}, I(n)
\end{aligned}
$$

"Strong" math induction:

$$
\begin{aligned}
& I(0) \\
& (\forall i \leq n, I(i)) \rightarrow I(n+1) \\
\therefore \quad & \forall n \in \mathbb{N}, I(n)
\end{aligned}
$$

Elements of recurrences (things to look for in making a good guess):

- The coefficient of the recursive application (number of subproblems)
- The divisor of n in the recursive application (size of subproblems)
- The non-recursive terms

Ex. 4.3-1. $T(n)=T(n-1)+n$.

Ex. 4.3-1. $T(n)=T(n-1)+n$. Guess $T(n) \leq c \cdot n^{2}$. Then

$$
\begin{aligned}
T(n) & \leq c(n-1)^{2}+n \\
& =c n^{2}-2 c n+c+n \\
& =c n^{2}+(1-2 c) n+c \\
& \leq c n^{2}
\end{aligned}
$$

The last step holds as long as

$$
\begin{aligned}
(1-2 c) n+c & \leq 0 \\
(2 c-1) n & \geq c \\
n & \geq \frac{c}{2 c-1}
\end{aligned}
$$

The recurrence holds so long as $c>\frac{1}{2}$ and $n_{0}>\frac{c}{2 c-1}$.
4.3-2. $T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+1$.
4.3-2. $T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+1$. First attempt. Guess $T(n) \leq c \lg n$

$$
\begin{aligned}
T(n) & \leq c \lg \left\lceil\frac{n}{2}\right\rceil+1 \\
& \leq c \lg \left(\frac{n}{2}+\frac{1}{2}\right)+1 \\
& =c \lg \left(\frac{n+1}{2}\right)+1 \\
& =c(\lg (n+1)-\lg 2)+1 \\
& =c(\lg (n+1)-1)+1 \\
& =c \lg (n+1)-c+1
\end{aligned}
$$

We would need this to be less than $c \lg n \ldots$
4.3-2. $T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+1$. Try again. This time, guess $T(n) \leq c \lg (n-b)$.

$$
\begin{aligned}
T(n) & \leq c \lg \left(\left\lceil\frac{n}{2}\right\rceil-b\right)+1 \\
& \leq c \lg \left(\frac{n}{2}+\frac{1}{2}-b\right)+1 \\
& =c \lg \left(\frac{n+1-2 b}{2}\right)+1 \\
& =c(\lg (n+1-2 b)-\lg 2)+1 \\
& =c \lg (n+1-2 b)-c+1 \\
& \leq c \lg (n-b)
\end{aligned}
$$

The last part holds if $n+1-2 b \leq n-b$, so $b \geq 1$; and if $-c+1 \leq 0$, so $c \geq 1$.
4.3-6. $T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor+17\right)+n$.
4.3-6. $T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor+17\right)+n$. Guess $c n \lg n$. Then

$$
\begin{aligned}
T(n) & =2 T\left(\left\lfloor\frac{n}{2}\right\rfloor+17\right)+n \\
& \leq 2 c\left(\left\lfloor\frac{n}{2}\right\rfloor+17\right) \lg \left(\left\lfloor\frac{n}{2}\right\rfloor+17\right)+n \\
& \leq 2 c\left(\frac{n}{2}+17\right) \lg \left(\frac{n}{2}+17\right)+n \\
& =c(n+34)(\lg (n+34)-1)+n \\
& =c n \lg (n+34)-c n-c 34+n
\end{aligned}
$$

This isn't working out.
4.3-6. $T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor+17\right)+n$. Try again, this time guess $c(n-34) \lg (n-34)$.

$$
\begin{aligned}
T(n) & =2 T\left(\left\lfloor\frac{n}{2}\right\rfloor+17\right)+n \\
& \leq 2 c\left(\left\lfloor\frac{n}{2}\right\rfloor+17-34\right) \lg \left(\left\lfloor\frac{n}{2}\right\rfloor+17-34\right)+n \\
& \leq 2 c\left(\frac{n}{2}+17-34\right) \lg \left(\frac{n}{2}+17-34\right)+n \\
& =c(n-34) \lg \left(\frac{n-34}{2}\right)+n=c(n-34)(\lg (n-34)-1)+n \\
& =c(n-34) \lg (n-34)-c n+34 c+n \leq c(n-34) \lg (n-34)
\end{aligned}
$$

The last step holds if $-c n+34 c+n \leq 0$.

$$
\begin{aligned}
c n-34 c & \leq n \\
c & \geq \frac{n}{n-34}
\end{aligned}
$$

Notice that as n gets bigger, the ratio gets closer to 1 , but will always be slightly bigger. Pick $c=2$. Then we need $2 n-68 \geq n$, or $n \geq 68$.
4.3-9. $T(n)=3 T(\sqrt{n})+\lg n$.
4.3-9. $T(n)=3 T(\sqrt{n})+\lg n$. Let $m=\lg n, n=2^{m}$. Then define

$$
\begin{aligned}
S(m) & =T\left(2^{m}\right) \\
& =3 T\left(2^{\frac{m}{2}}\right)+\lg 2^{m} \\
& =3 T\left(2^{\frac{m}{2}}\right)+m \\
& =3 S\left(\frac{m}{2}\right)+m
\end{aligned}
$$

What do you do with that? Guess $\mathrm{cm} \lg \mathrm{m}$, on the intuition of its similarity to mergesort.

$$
\begin{aligned}
& =3 c \frac{m}{2} \lg \frac{m}{2}+m \\
& =\frac{3}{2} c m \lg m-\frac{3}{2} c m+m
\end{aligned}
$$

This isn't working out. In fact, the complexity class is wrong.

$$
C_{m s}(n)= \begin{cases}0 & \text { if } n \leq 1 \\ n-1+2 C_{m s}\left(\frac{n}{2}\right) & \text { otherwise }\end{cases}
$$

4.3-9. $T(n)=3 T(\sqrt{n})+\lg n$. Again, let $m=\lg n, n=2^{m}$, and $S(m)=3 S\left(\frac{m}{2}\right)+m$. Then guess $m^{\lg 3}-\frac{m}{2}$. (Of course.)

$$
\begin{aligned}
S(m) & =3 S\left(\frac{m}{2}\right)+m \\
& =3\left(\left(\frac{m}{2}\right)^{\lg 3}-\frac{m}{2}\right)+m \\
& =3 \frac{m^{\lg 3}}{2^{\lg 3}}-\frac{3}{2} m+m \\
& =3 \frac{m^{\lg 3}}{3}+\frac{-3+2}{2} m \\
& =m^{\lg 3}-\frac{m}{2}
\end{aligned}
$$

So, $S(m)=\Theta\left(m^{\lg 3}\right)=\Theta\left((\lg n)^{\lg 3}\right)$.

