Regular expressions are a notation for specifying (denoting) languages. A regular expression defines/denotes/specifies a langue (a set of strings).

Regular expressions constitute a recursively defined set:

Base cases

\emptyset
$\varepsilon \quad r s$
$a \in \Sigma$

Recursive cases
$r \mid s \quad$ (in the book as $r \cup s$)
$r *$

A languages for which there exists a regular expression that generates it is called regular. We can talk of the set (or class) of regular languages.

Theorem (Lemma?) 2.3.1: The class of languages accepted by finite automata is closed under union, concatenation, Kleene star, complementation, and intersection.

Rewritten:
If L_{1} and L_{2} are in the set of languages accepted by DFAs/NFAs, then so are

$$
L_{1} \cup L_{2} \quad L_{1} L_{2} \quad L_{1} * \quad \overline{L_{1}} \quad \text { and } \quad L_{1} \cap L_{2}
$$

Analyzed in terms of quantification:

$$
\begin{array}{lll|l}
\forall L_{1}, L_{2}, & \text { if } \exists M_{1}, M_{2} & L\left(M_{1}\right)=L_{1} \text { and } L\left(M_{2}\right)=L_{2} \\
& \text { then } \exists M_{3} & L\left(M_{3}\right)=L_{1} \cup L_{2} \text { (etc) }
\end{array}
$$

Main result:

Theorem 2.3.2: A language L is regular iff $\exists M \in N F A$ such that $L(M)=L$.
Corollary:

$$
\begin{gathered}
\text { Set of } \\
\text { regular } \\
\text { languages }
\end{gathered}=\begin{gathered}
\text { Set of } \\
\text { NFA } \\
\text { languages }
\end{gathered}=\begin{gathered}
\text { Set of } \\
\text { DFA } \\
\text { languages }
\end{gathered}
$$

Theorem 2.3.2: A language L is regular iff $\exists M \in N F A$ such that $L(M)=L$.
Proof (outline). (\Rightarrow) Suppose t is a regular expression.
Base cases. Suppose $t=\varepsilon$

$$
\text { Suppose } t=\emptyset
$$

Suppose $t=\mathrm{a} \in \Sigma$

Inductive cases. Suppose $t=r \mid s$

> We know by induction that there exist M_{1} and M_{2} such that $L\left(M_{1}\right)=r$ and $L\left(M_{2}\right)=s$.

Theorem 2.3.2: A language L is regular iff $\exists M \in N F A$ such that $L(M)=L$.
Proof (outline) continued. (\Leftarrow) Suppose $M \in N F A$. [We need to construct a regular expression that generates the language that M accepts.]

Label the states of $M q_{1}, q_{2}, \ldots q_{n}$ arbitrarily except that $s=q_{1}$.
Consider the set of state-transition paths from q_{i} to q_{j} that do not include any state q_{x} for $x>k$.

Let $R(i, j, k)$ be the set of strings that drive the machine from q_{i} to q_{j} without stopping at any state q_{x} for $x>k$.

For any q_{i} and q_{j}, show that $R(i, j, k)$ is regular by induction on k.
Hence $R(1, j,|K|)$ is regular for any $q_{j} \in F$. Therefore $L(M)$ is regular.

News of the day: Not all languages are regular.

Non-constructive proof: The set of languages is uncountable, but the set of regular expressions is countable. Hence some languages can't be specified by a regular expression.

Theorem 2.4.1: Let L be a regular language. There is an integer $n \geq 1$ such that any string $w \in L$ with $|w| \geq n$ can be written as $w=x y z$ such that $y \neq \varepsilon,|x y| \leq n$, and $x y^{i} z \in L$ for each $i \geq 0$.

Theorem 2.4.1: Let L be a regular language. There is an integer $n \geq 1$ such that any string $w \in L$ with $|w| \geq n$ can be written as $w=x y z$ such that $y \neq \varepsilon,|x y| \leq n$, and $x y^{i} z \in L$ for each $i \geq 0$.

This is a pumping theorem:
Proof (sketch). Let M be a DFA that accepts L. Suppose $w \in L$ and w is at least as long as the number of states in M.

At least one state is repeated in the transition sequence, some $q_{i}=q_{j}$. Let $x y z=w$ where x is the prefix of w from s to q_{i}, y is the substring of w from q_{i} to q_{j}, and z the suffix of w from q_{j} to $f \in F$.
When the machine gets back to $q_{i}=q_{j}$, it could accept another copy of y-or it could have not had y in the input string at all.

Hence $\forall i, i \geq 0, x y^{i} z \in L . \square$

