Regular expressions are a notation for specifying (denoting) languages. A regular expression defines/denotes/specifies a langue (a set of strings).

Regular expressions constitute a recursively defined set:

Base cases	Recursive cases
Ø	$r s$ (in the book as $r\cup s$
ε	r s
$\mathtt{a}\in \Sigma$	r*

A languages for which there exists a regular expression that generates it is called **regular**. We can talk of the set (or class) of **regular languages**.

Theorem (Lemma?) 2.3.1: The class of languages accepted by finite automata is closed under union, concatenation, Kleene star, complementation, and intersection.

Rewritten:

If L_1 and L_2 are in the set of languages accepted by DFAs/NFAs, then so are

 $L_1 \cup L_2$ L_1L_2 L_1* $\overline{L_1}$ and $L_1 \cap L_2$

Analyzed in terms of quantification:

$$\begin{array}{cccc} \forall \ L_1, L_2, & \text{if} & \exists \ M_1, M_2 & | & L(M_1) = L_1 \text{ and } L(M_2) = L_2 \\ & \text{then} & \exists \ M_3 & | & L(M_3) = L_1 \cup L_2 \text{ (etc)} \end{array}$$

Main result:

Theorem 2.3.2: A language *L* is regular iff $\exists M \in NFA$ such that L(M) = L. **Corollary:**

Set of		Set of		Set of
regular	=	NFA	=	DFA
languages		languages		languages

Theorem 2.3.2: A language L is regular iff $\exists M \in NFA$ such that L(M) = L.

Proof (outline). (\Rightarrow) Suppose t is a regular expression.

Base cases. Suppose $t = \varepsilon$

Suppose $t = \emptyset$

Suppose $t = a \in \Sigma$

Inductive cases. Suppose t = r|s

We know by induction that there exist M_1 and M_2 such that $L(M_1) = r$ and $L(M_2) = s$.

Theorem 2.3.2: A language L is regular iff $\exists M \in NFA$ such that L(M) = L.

Proof (outline) continued. (\Leftarrow) Suppose $M \in NFA$. [We need to construct a regular expression that generates the language that M accepts.]

Label the states of M $q_1, q_2, \ldots q_n$ arbitrarily except that $s = q_1$.

Consider the set of state-transition paths from q_i to q_j that do not include any state q_x for x > k.

Let R(i, j, k) be the set of strings that drive the machine from q_i to q_j without stopping at any state q_x for x > k.

For any q_i and q_i , show that R(i, j, k) is regular by induction on k.

Hence R(1, j, |K|) is regular for any $q_j \in F$. Therefore L(M) is regular. \Box

News of the day: Not all languages are regular.

Non-constructive proof: The set of languages is uncountable, but the set of regular expressions is countable. Hence some languages can't be specified by a regular expression.

Theorem 2.4.1: Let *L* be a regular language. There is an integer $n \ge 1$ such that any string $w \in L$ with $|w| \ge n$ can be written as w = xyz such that $y \ne \varepsilon$, $|xy| \le n$, and $xy^i z \in L$ for each $i \ge 0$.

Theorem 2.4.1: Let *L* be a regular language. There is an integer $n \ge 1$ such that any string $w \in L$ with $|w| \ge n$ can be written as w = xyz such that $y \ne \varepsilon$, $|xy| \le n$, and $xy^i z \in L$ for each $i \ge 0$.

This is a *pumping theorem*:

Proof (sketch). Let M be a DFA that accepts L. Suppose $w \in L$ and w is at least as long as the number of states in M.

At least one state is repeated in the transition sequence, some $q_i = q_j$. Let xyz = w where x is the prefix of w from s to q_i , y is the substring of w from q_i to q_i , and z the suffix of w from q_i to $f \in F$.

When the machine gets back to $q_i = q_j$, it could accept another copy of *y*—or it could have not had *y* in the input string at all.

Hence $\forall i, i \geq 0, xy^i z \in L$. \Box

・ロト・日本・日本・日本・日本・

・ロト・日本・日本・日本・日本・