
Turing machines

Criteria:

I They should be automata

I They should be as simple as possible to describe

I They should be as general as possible

The tape has a left end, but it extends indefinitely to the right.

LP pg 180



Formal definition:
A Turing machine is a quintuple (K ,Σ, δ, s,H) where

I K is a finite set of states

I Σ is an alphabet, including t (blank) and . (left-end-of-tape), but not ← or →.

I s ∈ K is the initial state

I H ⊆ K is the set of halting states

I δ is the transition function from (K − H)× Σ to K × (Σ ∪ {←,→})
I For all q ∈ K − H, if δ(q, .) = (p, b), then b =→
I For all q ∈ K − H and a ∈ Σ, if δ(q, a) = (p, b), then b 6= .



Ex 4.1.1: K = {q0, q1, h},Σ = {a,t, .}, s = q0},H = {h}

q σ δ(q, σ)

q0 a (q1,t)
q0 t (h,t)
q0 . (q0,→)
q1 a (q0, a)
q1 t (q0,→)
q1 . (q1,→)

LP pg 182



Ex 4.1.1: K = {q0, h},Σ = {a,t, .}, s = q0,H = {h}}

q σ δ(q, σ)

q0 a (q0,←)
q0 t (h,t)
q0 . (q0,→)

LP pg 183



Prob 4.1.1: K = {q0, q1, h},Σ = {a, b,t, .}, s = q0},H = {h}

q σ δ(q, σ)

q0 a (q1, b)
q0 b (q1, a)
q0 t (h,t)
q0 . (q0,→)
q1 a (q0,→)
q1 b (q0,→)
q1 t (q0,→)
q1 . (q1,→)

LP pg 191



Definition 4.1.2: Configuration:

K × .Σ*× (Σ*(Σ− {t}) ∪ {ε})

Definition 4.1.3: `M means transition in one step to a new state and either write, go
left, or go right.

Definition 4.1.4:

I One configuration yields another: C0 `*M C2

I A computation is a sequence of configurations

I A computation has length n or n steps, C0 `nM Cn.



tR2
taL

2
ta> Lt

Rt

R
a 6= t

t

LP pg 190. Figure 4-8, redrawn



tRtaLt

Rt

a 6= t

t

> L

LP pg 190. Figure 4-9, redrawn and corrected



Definition as language acceptor:
A Turing machine is a quintuple (K ,Σ, δ, s,H)

I H = {y , n}
I M accepts w if (s, .tw) `*M (y , x)

I M rejects w if (s, .tw) `*M (n, x)

I M decides language L ⊆ Σ*
0 if ∀ w ∈ Σ*

0, if w ∈ L, then M accepts w ; and if
w /∈ L, then M rejects w .

I A language L is recursive if there exists a Turing machine that decides L.

The term “recursive,” as a synonym for “decidable,” goes back to mathematics as it existed
prior to computers. Then, formalisms for computation based on recursion (but not iteration
or loops) were commonly used as a notion of computation. These notations. . . had some of
the flavor of computation in functional programming languages such as LISP or ML. In that
sense, to say a problem was “recursive” had the positive sense of “it is sufficiently simple
that I can write a recursive function to solve it, and the function always finishes.” That is
exactly the meaning carried by the term today, in connection with Turing machines.

Hopcroft et al, Automata Theory, Languages, and Computation, pg 385.





Definition 4.2.4: Let M = (K ,Σ, δ, s,H) be a turing machine, Σ0 ⊆ Σ−{t, .} be an
alphabet and L ⊆ Σ*

0 be a language.

I M semidecides L if

∀ w ∈ Σ*
0,w ∈ L iff M halts on w

I L is recursively enumerable iff there exists a Turing machine that semidecides L.




