Turing machines

Criteria:

- They should be automata
- They should be as simple as possible to describe
- They should be as general as possible

The tape has a left end, but it extends indefinitely to the right.

Formal definition:

A Turing machine is a quintuple $(K, \Sigma, \delta, s, H)$ where

- K is a finite set of states
$\checkmark \Sigma$ is an alphabet, including \sqcup (blank) and \triangleright (left-end-of-tape), but not \leftarrow or \rightarrow.
- $s \in K$ is the initial state
- $H \subseteq K$ is the set of halting states
- δ is the transition function from $(K-H) \times \Sigma$ to $K \times(\Sigma \cup\{\leftarrow, \rightarrow\})$
- For all $q \in K-H$, if $\delta(q, \triangleright)=(p, b)$, then $b=\rightarrow$
- For all $q \in K-H$ and $a \in \Sigma$, if $\delta(q, a)=(p, b)$, then $b \neq \triangleright$

Ex 4.1.1: $\left.K=\left\{q_{0}, q_{1}, h\right\}, \Sigma=\{\mathrm{a}, \sqcup, \triangleright\}, s=q_{0}\right\}, H=\{h\}$

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{0}	\triangleright	$\left(q_{0}, \rightarrow\right)$
q_{1}	a	$\left(q_{0}, \mathrm{a}\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$
q_{1}	\triangleright	$\left(q_{1}, \rightarrow\right)$

LP pg 182

Ex 4.1.1: $\left.K=\left\{q_{0}, h\right\}, \Sigma=\{a, \sqcup, \triangleright\}, s=q_{0}, H=\{h\}\right\}$

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{0}, \leftarrow\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{0}	\triangleright	$\left(q_{0}, \rightarrow\right)$

LP pg 183

Prob 4.1.1: $\left.K=\left\{q_{0}, q_{1}, h\right\}, \Sigma=\{\mathrm{a}, \mathrm{b}, \sqcup, \triangleright\}, s=q_{0}\right\}, H=\{h\}$

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \mathrm{~b}\right)$
q_{0}	b	$\left(q_{1}, \mathrm{a}\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{0}	\triangleright	$\left(q_{0}, \rightarrow\right)$
q_{1}	a	$\left(q_{0}, \rightarrow\right)$
q_{1}	b	$\left(q_{0}, \rightarrow\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$
q_{1}	\triangleright	$\left(q_{1}, \rightarrow\right)$

LP pg 191

Definition 4.1.2: Configuration:

$$
K \times \triangleright \Sigma * \times(\Sigma *(\Sigma-\{\sqcup\}) \cup\{\varepsilon\})
$$

Definition 4.1.3: \vdash_{M} means transition in one step to a new state and either write, go left, or go right.

Definition 4.1.4:

- One configuration yields another: $C_{0} \vdash^{*} C_{2}$
- A computation is a sequence of configurations
- A computation has length n or n steps, $C_{0} \vdash^{n} C_{n}$.

LP pg 190. Figure 4-8, redrawn

LP pg 190. Figure 4-9, redrawn and corrected

Definition as language acceptor:

A Turing machine is a quintuple $(K, \Sigma, \delta, s, H)$

- $H=\{y, n\}$
- M accepts w if $(s, \triangleright \sqcup w) \vdash_{M}^{*}(y, x)$
- M rejects w if $(s, \triangleright \sqcup w) \vdash_{M}^{*}(n, x)$
- M decides language $L \subseteq \Sigma_{0}^{*}$ if $\forall w \in \Sigma_{0}^{*}$, if $w \in L$, then M accepts w; and if $w \notin L$, then M rejects w.
- A language L is recursive if there exists a Turing machine that decides L.

The term "recursive," as a synonym for "decidable," goes back to mathematics as it existed prior to computers. Then, formalisms for computation based on recursion (but not iteration or loops) were commonly used as a notion of computation. These notations... had some of the flavor of computation in functional programming languages such as LISP or ML. In that sense, to say a problem was "recursive" had the positive sense of "it is sufficiently simple that I can write a recursive function to solve it, and the function always finishes." That is exactly the meaning carried by the term today, in connection with Turing machines.

Finally, call a language L recursive if there is a Turing machine that decides it.

That is, a Turing machine decides a language L if, when started with input w, it always halts, and does so in a halt state that is the correct response to the input: y if $w \in L, n$ if $w \notin L$. Notice that no guarantees are given about what happens if the input to the machine contains blanks or the left end symbol.
Example 4.2.1: Consider the language $L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$, which has heretofore evaded all types of language recognizers. The Turing machine whose diagram is shown in Figure 4-11 decides L. In this diagram we have also utilized two new basic machines, useful for deciding languages: Machine y makes the new state to be the accepting state y, while machine n moves the state to n.

Figure 4-11

Definition 4.2.4: Let $M=(K, \Sigma, \delta, s, H)$ be a turing machine, $\Sigma_{0} \subseteq \Sigma-\{\sqcup, \triangleright\}$ be an alphabet and $L \subseteq \Sigma_{0}^{*}$ be a language.

- M semidecides L if

$$
\forall w \in \Sigma_{0}^{*}, w \in L \text { iff } M \text { halts on } w
$$

- L is recursively enumerable iff there exists a Turing machine that semidecides L.

