Chapter 3 roadmap:

- Propositions, boolean logic, logical equivalences. Game 1 (Monday)
- Conditional propositions. SML (Wednesday)
- Arguments. Game 2 (Today)
- Predicates and quantification. SML (next week Monday)
- Quantified arguments. Game 3 (next week Wednesday)
- Review for test (next week Friday)

Today:

- Define arguments
- Consider known "syllogisms"
- Practice verifying argument forms (Game 2)

Valid argument

If it is Monday, then it is raining It is Monday.
Therefore it is raining.
$p \rightarrow q$
p
$\therefore q$

$\begin{aligned} & \stackrel{0}{e} \\ & \stackrel{\rightharpoonup}{E} \\ & \stackrel{\rightharpoonup}{2} \\ & \hline \end{aligned}$		号		critical row
p	q	$p \rightarrow q$	q	
T	T	T	T	
T	F	F	F	
F	T	T	T	
F	F	T	F	

Invalid argument

If it is raining, then there are clouds There are clouds.
Therefore it is raining.

$p \rightarrow q$
 q

$\therefore p$

		-		critical row
p	q	$p \rightarrow q$	p	
T	T	T	T	
T	F	F	T	
F	T	T	F	$\stackrel{\text { critical row }}{ }$
F	F	T	F	

Alternate definition of validity

Valid argument

p	q	$p \rightarrow q$	$(p \wedge(p \rightarrow q)) \rightarrow q$
T	T	T	T
T	F	F	T
F	T	T	T
F	F	T	T

Invalid argument

p	q	$p \rightarrow q$	$(q \wedge(p \rightarrow q)) \rightarrow p$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

Modus tollens

If it is spring, then the daffodils bloom.
The daffodils aren't blooming.
Therefore it is not spring.

p	q	$p \rightarrow q$	$\sim q$	$\sim p$
T	T	T	F	
T	F	F	T	
F	T	T	F	
F	F	T	T	T

Modus Ponens

$p \rightarrow q$ p

$\therefore q$

Elimination
$p \vee q$
$\sim p$
$\therefore q$

Modus Tollens
$p \rightarrow q$
$\sim q$
$\therefore \sim p$

Transitivity
$p \rightarrow q$
$q \rightarrow r$
$\therefore p \rightarrow r$

Generalization

p
$\therefore p \vee q$
Specialization
$p \wedge q$
$\therefore p$

Division into cases

$$
p \vee q
$$

Contradiction $p \rightarrow F$
$p \rightarrow r$
$\therefore \sim p$
$q \rightarrow r$
$\therefore r$

Syllogisms in literature

Elmination:
If anyone knows anything about anything, it's Owl who knows something about something, or my name isn't Winnie-the-Pooh. Which it is. So there you have it.
A. A. Milne, Winnie-the-Pooh, Ch 4.

Division into cases:
Soon her eye fell on a little glass box that was lying under the table: she opened it, and found in it a very small cake, on which the words "EAT ME" were beautifully marked in currants. "Well, I'll eat it," said Alice, "and if it makes me grow larger, I can reach the key; and if it makes me grow smaller, I can creep under the door; so either way I'll get into the garden, and I don't care which happens!" Lewis Carroll, Alice's Adventures in Wonderland, Ch 1.

Proof by contradiction

$$
\begin{aligned}
& p \rightarrow F \\
& \therefore \sim p
\end{aligned}
$$

Restore us to yourself, O LORD, that we may be restored. Renew our days as of old-unless you have utterly rejected us, and you remain exceedingly angry with us.

Lam 5:21-22 (ESV)

Mod Pon	Mod Tol	Generalization Specialization	Elimination	Transitivity	Div into cases	Contradiction	
$p \rightarrow q$	$p \rightarrow q$	p	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$		$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$		

3.9.1
(a) $t \rightarrow u$
(b) $p \vee \sim q$
(c) $p \rightarrow(u \rightarrow r)$
(d) q
(e) $\therefore t \rightarrow r$

Mod Pon	Mod Tol	Generalization Specialization	Elimination	Transitivity	Div into cases	Contradiction	
$p \rightarrow q$	$p \rightarrow q$	p	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$		$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$	$\therefore r$	

3.9.2
(a) $p \rightarrow t$
(b) $\sim(q \rightarrow t) \rightarrow w$
(c) $p \vee q$
(d) $\sim w$
(e) $\therefore t$

Mod Pon	Mod Tol	Generalization Specialization	Elimination	Transitivity	Div into cases	Contradiction	
$p \rightarrow q$	$p \rightarrow q$	p	$\therefore \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$		$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$		

3.9.8

(a) w
(b) $q \rightarrow r$
(c) $t \rightarrow s$
(d) $u \rightarrow s$
(e) $(\sim t \wedge \sim u) \rightarrow \sim w$
(f) $(s \vee y) \rightarrow(p \rightarrow q)$
(g) $\sim(p \rightarrow r) \vee x$
(h) $\therefore x$

Mod Pon	Mod Tol	Generalization Specialization	Elimination	Transitivity	Div into cases	Contradiction	
$p \rightarrow q$	$p \rightarrow q$	p	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$			$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$	

3.9.9
(a) $p \rightarrow q$
(b) x
(c) $\sim(p \vee w) \rightarrow r$
(d) $q \rightarrow u$
(e) $x \rightarrow t$
(f) $w \rightarrow u$
(g) $r \vee s$
(h) $r \rightarrow F$
(i) $\therefore t \wedge s \wedge u$

Mod Pon	Mod Tol	Generalization Specialization	Elimination	Transitivity	Div into cases	Contradiction	
$p \rightarrow q$	$p \rightarrow q$	p	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$		$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$		

3.9.10
(a) $u \rightarrow \sim p$
(b) $(\sim p \vee q) \rightarrow(r \rightarrow s)$
(c) $u \wedge \sim w$
(d) $t \rightarrow s$
(e) $(\sim t \wedge \sim r) \rightarrow w$
(f) $\therefore s$

For next time:

Pg 119: 3.8.(3 \& 5)
Pg 122: 3.9.(3-7)
Read carefully 3.(10 \& 11)
Skim 3.(12 \& 13)
Take quiz

