
Chapter 6 roadmap:

▶ Recursive definitions and types (last week Monday)

▶ Structural induction (last week Wednesday)

▶ Mathematical induction (last week Friday)

▶ Loop invariant proofs (Monday and Wednesday)

▶ (Begin Chapter 7 (Functions) on Friday)

Project prototype due Wed, Nov 8

So far, we have seen

▶ Defining types and sets recursively.

▶ Proving propositions quantified over recursively defined sets using structural
induction.

▶ Proving propositions quantified over W or N using mathematical induction.
Specifically, to prove ∀ n ∈ W, I (n),
▶ Prove I (0)
▶ Prove ∀ n ∈ W, I (n) → I (n + 1)

Today and Wednesday are about

▶ Proving the correctness of algorithms using mathematical induction

For next time:
Take quiz (on loop invariants)

For Friday, Nov 10:

Pg 306: 6.10.(2-5)

Read 7 intro and 7.1 carefully
Read 7.2
Skim 7.3
Take quiz (on function introduction)

n! =

{
1 if n = 0
n · (n − 1)! otherwise

fun factorial(0) = 1

| factorial(n) = n * factorial(n-1);

Theorem 6.6. For all n ∈ W, factorial(n) = n!

Proof. By induction on n.

Base case. Suppose n = 0. By definition of factorial, factorial(0) = 1 = 0!,
by definition of !. Hence there exists an N ≥ 0 such that factorial(N) = N!.

Inductive case. Suppose N ≥ 0 such that factorial(N) = N!, and suppose
n = N + 1. Then

factorial(n) = n · factorial(n − 1) by definition of factorial
= n · factorial(N) by algebra and substitution
= n · N! by the inductive hypothesis
= n! by definition of !

Therefore, by math induction, factorial is correct for all n ∈ W. □

What does correctness mean for an algorithm?

The outcome/result must aways match the specification. For arithSum, the
specification is

arithSum(N) =
N∑

k=1

k

To prove this, we need to reason about the change of state of the computation.

The state of the computation is represented by the values of the variables.

We can reason about a single line of code in terms of preconditions and postconditions.

Suppose the preconditions include x = 5.

y := x + 1

Then the postconditions include

▶ y = 6

▶ x = 5

▶ x = y − 1

▶ G = 6.674× 10−11 m3

kg s2

fun remainder(a, b) =

let

Suppose a, b ∈ Z
val q = a div b;

q = a div b by assignment. By the QRT (Thm 4.21)
and the definition of division, a = b · q + R for some R,
0 ≤ R < b. Then by algebra, q = a−R

b .
val p = q * b;

p = q · b by assignment, and p = a − R by substitution
and algebra.

val r = a - p;

By assignment, r = a − p. By substitution and algrebra,
r = a− (a− R) = R.

in

r

end;
Since r is the value returned and is equal to the specified result R, this program
returns the correct result. □

For arithSum, N is the limit on the summation. Let n be the number of iterations so
far. Our claim is

After n iterations, s =
n∑

k=1

k

Notice

▶ After 0 iterations, s = 0 and
∑0

k=1 k = 0. Our claim is true before we start.

▶ Each iteration changes the state, but maintains the fact above (or, so we claim).

▶ When we’re done, that’s N iterations, so
∑n

k=1 k =
∑N

k=1 k (or, so we claim).

Refining the claim:

∀ n ∈ W, after n iterations s =
n∑

k=1

k and i = n + 1

Theorem. arithSum(N) returns
∑N

k=1 k .

Lemma. ∀ n ∈ W, after n iterations, s =
∑n

k=1 k and i = n + 1.

Proof (of lemma). By induction on the number of iterations, n.
Initialization. After 0 iterations, s = 0 =

∑0
k=1 k by assignment, arithmetic,

and definition of summation. i = 1 = 0 + 1, by assignment and arithmetic.
Maintenance. Suppose after n ≥ 0 iterations, s =

∑n
k=1 k and i = n + 1.

Let sold be s after n iterations and snew be s after n + 1 iterations. Similarly
define iold and inew. Then

snew = sold + iold by assignment
= (

∑n
k=1 k) + n + 1 by the inductive hypothesis

=
∑n+1

k=1 k by the definition of summation
inew = iold + 1 by assignment

= n + 1 + 1 by the inductive hypothesis
= (n + 1) + 1 by associativity

Therefore the invariant holds. □

Theorem. arithSum(N) returns
∑N

k=1 k .

Lemma. ∀ n ∈ W, after n iterations, s =
∑n

k=1 k and i = n + 1.

Proof (of theorem). Suppose N ∈ W is the input to arithSum.

Termination. The lemma tells us that after N iterations, i = N + 1 ̸≤ N, so
the guard fails and the loop terminates.

At loop exit, s =
∑N

k=1 k , which is return.

Therefore the program arithSum is correct. □

Principles of using loop invariants to prove correctness

▶ A loop invariant is a proposition that is true before and after each iteration of a
loop, including before the entire loop starts and after it terminates. A useful loop
invariant captures an aspect of the progress of the loop’s work.

▶ The steps in a loop invariant proof, to prove and apply something in the form,
“∀n ∈ W, after n iterations,”
▶ Initialization. Prove that the property is true before the loop starts, that is, after 0

iterations. This is the base case in the inductive proof.

▶ Maintenance. Prove that if the property is true before an iteration, then it is true
after that iteration. This is the inductive case of the inductive proof.

▶ Termination. Prove that the loop will terminate, and then apply the loop invariant
to deduce a postcondition for the entire loop.

fun aaa(m) =

let

val x = ref 0;

val i = ref 0;

in

(while !i < m do

(x := !x + 2 * !i;

i := !i + 1);

!x)

end;

After n iterations, x is even.

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, x = 0 by assignment.
Moreover, x = 2 · 0, so x is even by definition.
Maintenance. Suppose that after n iterations x is even, for
some n ≥ 0. Let xold and xnew be x after n and n+1 iterations,
respectively.
xold = 2j for some j ∈ Z by the inductive hypothesis and
definition of even. Then

xnew = xold + 2i by assignment
= 2j + 2i by substitution
= 2(j + i) by algebra

Hence xnew is even by definition.
Therefore, by the principle of mathematical induction, that
x is even is a loop invariant. □

fun pow(x, y) =

let

val a = ref 1;

val i = ref y;

in

(while !i > 0 do

(i := !i - 1;

a := !a * x);

!a)

end;

After n iterations, a = xn and i = y − n.
Proof. By induction on the number of iterations.
Initialization. Suppose n = 0, that is, the conditions be-
fore the loop starts. Then a = 1 by assignment, and hence
a = x0 = xn by algebra. Similarly, i = y by assignment,
and hence i = y − 0 = y − n by algebra.
Maintenance. Suppose that a = xn and i = y − n after
n iterations for some n ≥ 0. Let aold, anew, iold, and inew be
defined in the usual way. Then

inew = iold − 1 by assignment
= y − n − 1 by the inductive hypothesis
= y − (n + 1) by algebra

anew = aold · x by assignment
= xn · x by the inductive hypothesis
= xn+1 by algebra

Therefore, by the principle of mathematical induction, a =
xn and i = y − n, where n is the number of iterations
completed, is a loop invariant. □

fun xxx(m) =

let

val x = ref m;

val y = ref 0;

val i = ref 1;

in

(while !i < m div 2 do

(x := !x - i;

y := !y + i;

i := !i * 2);

!x - !y)

end;

After n iterations, x + y = m.

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, x = m and y = 0 by
assignment. Hence x + y = m by algebra.
Maintenance Suppose x + y = m after n iterations for
some n ≥ 0. Let xold, xnew, yold, and ynew be defined in the
usual way. Then

xnew = xold − i by assignment
ynew = yold + i by assignment

x ̸= +ynew = xold − i + yold + i by substitution
= xold + yold by algebra
= m by the inductive hypothesis

Therefore, by the principle of mathematical induction, x +
y = m is a loop invariant. □

fun xxx(m) =

let

val x = ref m;

val y = ref 0;

val i = ref 1;

in

(while !i < m div 2 do

(x := !x - i;

y := !y + i;

i := !i * 2);

!x - !y)

end;

After n iterations, x + y = m.

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, x = m and y = 0 by
assignment. Hence x + y = m by algebra.
Maintenance Suppose x + y = m after n iterations for
some n ≥ 0. Let xold, xnew, yold, and ynew be defined in the
usual way. Then

xnew = xold − i by assignment
ynew = yold + i by assignment

x ̸= +ynew = xold − i + yold + i by substitution
= xold + yold by algebra
= m by the inductive hypothesis

Therefore, by the principle of mathematical induction, x +
y = m is a loop invariant. □

fun xxx(m) =

let

val x = ref m;

val y = ref 0;

val i = ref 1;

in

(while !i < m div 2 do

(x := !x - i;

y := !y + i;

i := !i * 2);

!x - !y)

end;

After n iterations, x + y = m.

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, x = m and y = 0 by
assignment. Hence x + y = m by algebra.
Maintenance Suppose x + y = m after n iterations for
some n ≥ 0. Let xold, xnew, yold, and ynew be defined in the
usual way. Then

xnew = xold − i by assignment
ynew = yold + i by assignment

x ̸= +ynew = xold − i + yold + i by substitution
= xold + yold by algebra
= m by the inductive hypothesis

Therefore, by the principle of mathematical induction, x +
y = m is a loop invariant. □

fun xxx(m) =

let

val x = ref m;

val y = ref 0;

val i = ref 1;

in

(while !i < m div 2 do

(x := !x - i;

y := !y + i;

i := !i * 2);

!x - !y)

end;

After n iterations, x + y = m.

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, x = m and y = 0 by
assignment. Hence x + y = m by algebra.
Maintenance Suppose x + y = m after n iterations for
some n ≥ 0. Let xold, xnew, yold, and ynew be defined in the
usual way. Then

xnew = xold − i by assignment
ynew = yold + i by assignment

x ̸= +ynew = xold − i + yold + i by substitution
= xold + yold by algebra
= m by the inductive hypothesis

Therefore, by the principle of mathematical induction, x +
y = m is a loop invariant. □

fun xxx(m) =

let

val x = ref m;

val y = ref 0;

val i = ref 1;

in

(while !i < m div 2 do

(x := !x - i;

y := !y + i;

i := !i * 2);

!x - !y)

end;

After n iterations, x + y = m.

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, x = m and y = 0 by
assignment. Hence x + y = m by algebra.
Maintenance Suppose x + y = m after n iterations for
some n ≥ 0. Let xold, xnew, yold, and ynew be defined in the
usual way. Then

xnew = xold − i by assignment
ynew = yold + i by assignment

xnew + ynew = xold − i + yold + i by substitution
= xold + yold by algebra
= m by the inductive hypothesis

Therefore, by the principle of mathematical induction, x +
y = m is a loop invariant. □

fun xxx(m) =

let

val x = ref m;

val y = ref 0;

val i = ref 1;

in

(while !i < m div 2 do

(x := !x - i;

y := !y + i;

i := !i * 2);

!x - !y)

end;

After n iterations, x + y = m.

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, x = m and y = 0 by
assignment. Hence x + y = m by algebra.
Maintenance Suppose x + y = m after n iterations for
some n ≥ 0. Let xold, xnew, yold, and ynew be defined in the
usual way. Then

xnew = xold − i by assignment
ynew = yold + i by assignment

xnew + ynew = xold − i + yold + i by substitution
= xold + yold by algebra
= m by the inductive hypothesis

Therefore, by the principle of mathematical induction, x +
y = m is a loop invariant. □

Reminder: Ex 6.10.(2-5) for next time.
Also (very important):

▶ Read 7 intro and 7.1 carefully

▶ Read 7.2

▶ Skim 7.3

▶ Take quiz

