Chapter 1 outline:

- Introduction, sets and elements (last week Wednesday)
- Set operations; visual verification of set propositions (last week Friday)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Introduction to SML; cardinality and Cartesian products (Monday)
- Making types in SML (Today)
- Making functions in SML (Friday)

Today: Making stuff in SML

- A few follow-up points from last time
- Making our own types
- Making our own operations (time permitting)

1.8.1 What is the cardinality of $\{0, 1, 2, ..., n\}$?

1.8.3 One might be tempted to think $|A \cup B| = |A| + |B|$, but this is not true in general. Why not? (Assume A and B are finite.)

1.8.6 Describe three distinct partitions of the set \mathbb{Z} .

1.9.5 Based on our description of the real number plane as a Cartesian product, explain how a line can be interpreted as a set.

1.9.6 Explain how $\mathbb{C},$ the set of complex numbers, can be thought of as a Cartesian product.

1.9.7 Any rational number (an element of set \mathbb{Q}) has two integers as components. Why not rewrite fractions as ordered pairs (for example, $\frac{1}{2}$ as (1,2) and $\frac{3}{4}$ as (3,4)) and claim that \mathbb{Q} can be thought of as $\mathbb{Z} \times \mathbb{Z}$? Explain why these two sets *cannot* be thought of as two different ways to write the same set. (There are at least two reasons.)

#1(5, 4) + int(4.0 / 3.1)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

(5 + 7, String.sub("hello", 2))

▲□▶▲舂▶★≧▶★≧▶ 差 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

For next time:

Pg 36: 1.9.(3, 4, 8, 9, 10, 14, 16) Pg 40: 1.10.(1-4)

SML problems should still be submitted on paper with the rest of the assignment.

```
Re-read 1.11 (if necessary)
Read 1.(12 & 13).
(No quiz)
```

