POS-tagging and Hidden Markov Models unit:

- The POS-tagging problem (Monday)
- HMM definition and problem statements (Wednesday)
- Solution to Problem 1 (forward algorithm) and POS application (Wednesday and Friday)
- Solution to Problem 2 (Viterbi algorithm) and POS application (Friday and next week Monday)
- Solution to Problem 3 (EM/Baum-Welch algorithm) and linguistic application (next week Monday and Wednesday)

Universal			Penn Treebank	
ADJ	Adjective	JJ	Adjective	yellow
		JJR	Comparative adjective	bigger
		JJS	Superlative adjective	wildest
ADP	Adposition	IN	Preposition	of, in , by
		RP	Particle	up, off
ADV	Adverb	RB	Adverb	quickly
		RBR	Comparative adverb	faster
		RBS	Superlative adverb	fastest
		WRB	Wh-adverb	how, where
CONJ	Conjunction	CC	Coordinating conjunction	and, but, or

DET	Universal		Penn Treebank	
	Determiner, article	DT	Determiner	a, the
		PDT	Predeterminer	all, both
		PRP\$	Posessive pronoun	your, one's
		WDT	Wh-determiner	which, that
		WP\$	Wh-possessive	whose
NOUN	Noun	NN	Singular or mass noun	llama
		NNP	Proper noun, singular	IBM
		NNPS	Noun, plural	llamas
NUM	Numeral	CD	Cardinal number	one, two
PRT	Particle	POS	Possessive ending	's
		TO	"to" [Infinitive marker]	to
PRON	Pronoun	EX	Existential "there"	there
		PRP	Personal pronoun	I, you, he
		WP	Wh-pronoun	what, who

Universal			Penn Treebank		
VERB	Verb	MD	Modal can, should		
		VB	Verb base	eat	
		VBD	Verb past tense	ate	
		VBG	Verb gerund	eating	
		VBN	Verb past participle	eaten	
		VBP	Verb non-3sp	eat	
		VBZ	Verb 3sp	eats	
.	Puntuation mark	(none)			
X	Other	FW	Foreign word	mea culpa	
		LS	List item marker	1,2, One	
		SYM	Symbol		
		UH	Interjection	ah, oops	

PRON	VERB rose	PRT to	VERB saw	ADP off	DET the	ADJ still	NOUN rose
PRON	PRON	VERB	ADV	VERB	ADP	DET	NOUN
that	I	saw	still	grew	by	the	still.

Suppose we want to determine the average annual temperature at a particular location on earth over a series of years.

To simplify the problem, we consider only two annual temparatures, "hot" and "cold." Suppose that evidence indicates that the probability of a hot year followed by another hot year is 0.7 and the probability that a cold year is followed by another cold year is 0.6.

Also suppose that research indicates a correlation between the size of tree growth rings and temparature. For simplicity, we consider only three different tree ring sizes: small, medium, and large. Finally suppose hot years are more likely to result in large tree rings, cold years in small.

	H	C	S	M	L
H	0.7	0.3	0.1	0.4	0.5
C	0.4	0.6	0.7	0.2	0.1
	Mark Stamp, "A Revealing Introduction to Hidden Markov Models". Abridged.				

Let Q be a set of N states types. Use $i, j, i i, j \in[0, N)$ to index into Q. Let V be a set of M symbols types. Use $k \in$ to index into V.

Let \bar{S} be a sequence of T state tokens and $\overline{\mathcal{O}}$ be a sequence of T observation tokens. Use $t \in[0, T)$ to index into $\overline{\mathcal{O}}$ and \bar{S}

Thus $\overline{\mathcal{O}}=\left\langle\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots \mathcal{O}_{T-1}\right\rangle$ is a sequence of observation tokens, e.g., $\mathcal{O}_{t}=v_{k}$, and $\bar{S}=\left\langle S_{0}, S_{1}, \ldots S_{T-1}\right\rangle$ is a sequence of state tokens, e.g., $S_{t}=q_{j}$.

A hidden Markov model is a triple $\lambda=(A, B, \pi)$ where

- A is an $N \times N$ matrix of state transition probabilities: $a_{i j}=P\left(S_{t+1}=q_{j} \mid S_{t}=q_{i}\right)$
- B is an $N \times M$ matrix of emission (or observation) probabilities:

$$
b_{j}(k)=P\left(\mathcal{O}_{t}=v_{k} \mid S_{t}=q_{j}\right)
$$

- π is the initial state distribution. $\pi_{i}=P\left(S_{0}=q_{i}\right)$

Four HMM problems:
Problem 0. Given $\overline{\mathcal{O}}$ together with \bar{S}, compute $\lambda=(A, B, \pi)$ most likely to have produced those sequences.
[Solution: MLE, possibly with smoothing.]
Problem 1. Given $\lambda=(A, B, \pi)$ and $\overline{\mathcal{O}}$, compute the probability that λ assigns to $\overline{\mathcal{O}}$. [Solution: The forward algorithm.]
Problem 2. Given $\lambda=(\overline{\mathcal{O}}, B, \pi)$ and $\overline{\mathcal{O}}$, find \bar{S} that maximizes the probability that λ assigns to $\overline{\mathcal{O}}$.
[Solution: The Viterbi algorithm.]
Problem 3. Given $\overline{\mathcal{O}}, M$ (or V), and N, find $\lambda=(A, B, \pi)$ that maximizes the likelihood of $\overline{\mathcal{O}}$.
[Solution: The Baum-Welch algorithm, a version of EM.]

$$
\alpha_{t}(i)=P\left(\overline{\mathcal{O}}[: t+1], S_{t}=q_{i} \mid \lambda\right)= \begin{cases}\pi_{i} \cdot b_{i}\left(\mathcal{O}_{0}\right) & \text { if } t=0 \\ \left(\sum_{j=0}^{N-1} \alpha_{t-1}(j) \cdot a_{j i}\right) \cdot b_{i}\left(\mathcal{O}_{t}\right) & \text { otherwise }\end{cases}
$$

$$
\beta_{t}(i)=P\left(\overline{\mathcal{O}}[t+1:] \mid S_{t}=q_{i}\right)= \begin{cases}1 & \text { if } t=T-1 \\ \sum_{j=0}^{N-1} a_{i j} \cdot b_{j}\left(\mathcal{O}_{t+1}\right) \cdot \beta_{t+1}(j) & \text { if } t<T-1\end{cases}
$$

$$
\delta_{t}(i)=\max _{\bar{S}[: t+1]} P\left(\overline{\mathcal{O}}[: t+1], \bar{S}[: t+1] \mid S_{t}=q_{i}\right)
$$

$$
= \begin{cases}\pi_{i} \cdot b_{i}\left(\mathcal{O}_{0}\right) & \text { if } t=0 \\ \left(\max _{0 \leq j<N} \delta_{t-1}(j) \cdot a_{j i}\right) \cdot b_{i}\left(\mathcal{O}_{t}\right) & \text { otherwise }\end{cases}
$$

$$
\psi_{t}(i)=\underset{q_{j}}{\operatorname{argmax}} P\left(S_{t-1}=q_{j}, S_{t}=q_{i} \mid \overline{\mathcal{O}}[: t+1]\right)
$$

$$
= \begin{cases}\text { None } & \text { if } t=0 \\ \underset{\substack{\operatorname{argmax} \\ 0 \leq j<N}}{ } \delta_{t-1}(j) \cdot a_{j i} & \text { if } t>0\end{cases}
$$

$$
\begin{aligned}
\lg \sum_{i=0}^{n-1} x_{i} & =\lg \left(x_{0}+x_{i}+\cdots+x_{n-1}\right) \\
& =\lg x_{0}+\lg \left(1+\sum_{i=1}^{n-1} \frac{x_{i}}{x_{0}}\right) \\
& =\lg x_{0}+\lg \left(1+\sum_{i=1}^{n-1} 2 \lg x_{i}-\lg x_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
\xi_{t}(i, j) & =P\left(S_{t}=q_{i}, S_{t+1}=q_{j} \mid \overline{\mathcal{O}}, \lambda\right) \\
& =\frac{P\left(S_{t}=q_{i}, S_{t+1}=q_{j}, \overline{\mathcal{O}} \mid \lambda\right)}{P(\overline{\mathcal{O}} \mid \lambda)} \\
& =\frac{\alpha_{t}(i) \cdot a_{i j} \cdot b_{j}\left(\mathcal{O}_{t+1}\right) \cdot \beta_{t+1}(j)}{\sum_{i i} \sum_{j j} \alpha_{t}(i i) \cdot a_{i i} j \cdot b_{j j}\left(\mathcal{O}_{t+1}\right) \cdot \beta_{t+1}(j j)}
\end{aligned}
$$

$$
\gamma_{t}(i)=P\left(S_{t}=q_{i} \mid \overline{\mathcal{O}}, \lambda\right)
$$

$$
=\sum_{j=0}^{N-1} P\left(S_{t}=q_{i}, S_{t+1}=q_{j} \mid \overline{\mathcal{O}}, \lambda\right)
$$

$$
=\sum_{j=0}^{N-1} \xi_{t}(i, j)
$$

$$
\begin{aligned}
\pi_{i} & =\gamma_{0}(i) \\
a_{i j} & =\frac{\text { expected transitions from } q_{i} \text { to } q_{j}}{\text { expected transitions from } q_{i}}=\frac{\sum_{t=0}^{T-2} \xi_{t}(i, j)}{\sum_{t=0}^{T-2} \gamma_{t}(i)} \\
b_{i}(k) & =\frac{\text { expected times } q_{i} \text { emits } v_{k}}{\text { expected times in } q_{i}}
\end{aligned}
$$

Coming up:

- Language model programming assignment (Mon, Sept 25)
- POS quiz (Thurs, Sept 21)
- Reading from J\&M, Sections 8.(0-4) (Fri, Sept 22)
- HMM quiz (Tues, Sept 26)
- HMM programming assignment (Wed, Oct 4)

