
Edit distance and information theory units:

▶ The edit distance problema nd algorithm (today)

▶ A quick tour of information theory (next week Wednesday)

▶ Lab: Autoregressive text generation (next week Friday)

Today:

▶ Follow-up on regex chatbot

▶ The idea of edit distance

▶ The minimum edit distance problem

▶ The minumum edit distance algorithm



cowlcow

row

owl

own

won

gown

grown

warmarm

cat

codcab

cot

coat

can

ran

ram

gold

good
wood

growl

cold grow

coal

oat eat ear dear

oar

beat

sour

soup pour

dour
four

doordoerdeer

soar

odor

soap
owe

owed

wed

pull

poll

pool

poor

flour

floor
towed

towel

tower

power

trowel

yard

word worn

world would

yarnwarn

beetfeetfeed

fed

fletfled

felt

fleet



Versions of the minimum edit distance:

▶ Substitutions only: Hamming distance. (Richard Hamming, 1950)

▶ Insertions and deletions: Longest common subsequence.

▶ Substitutions, insertions, and deletions: Levenshtein distance. (Vladimir
Levenshtein, 1966)

▶ Substitutions, insertions, deletions, and transpositions: Damerau-Levenshtein
distance. (Fred Damerau, 1964)



recieve
del−→ receve

ins−→ receive versus recieve
transp−→ receive

seperate
del−→ seprate

ins−→ separate versus seperate
sub−→ separate



definitely

defitely defiately

defiantely defiantlydefianitely

defiintely

defiitely

tra
nsp

del

insdel

ins del del

sub

ins



6 craven craven craven craven craven craven craven craven

c ca car carv carvi carvin carving

5 crave crave crave crave crave crave crave crave

c ca car carv carvi carvin carving

4 crav crav crav crav crav crav crav crav

c ca car carv carvi carvin carving

3 cra cra cra cra cra cra cra cra

c ca car carv carvi carvin carving

2 cr cr cr cr cr cr cr cr

c ca car carv carvi carvin carving

1 c c c c c c c c

c ca car carv carvi carvin carving

0
c ca car carv carvi carvin carving

0 1 2 3 4 5 6 7



D[i ][j ] =



0 if i = j = 0 (Empty prefixes:
do nothing)

j · C [0] if i = 0 and j > 0 (Empty prefix
of a: insert all
the b prefix)

i · C [1] if i > 0 and j = 0 (Empty prefix
of b: delete all
the a prefix)

min



C [0] + D[i − 1][j ] (insertion)
C [1] + D[i ][j − 1] (deletion)
C [2] + D[i − 1][j − 1] (substitution)
C [3] + D[i − 2][j − 2] if a[i − 1] = b[j − 2] (transposition)

and a[i − 2] = b[j − 1]
D[i − 1][j − 1] if a[i − 1] = b[j − 1] (nop)

 Otherwise



n 6/ins-all 5/ins 4/ins 4/ins 3/ins 3/ins 2/nop 3/del
e 5/ins-all 4/ins 3/ins 3/ins 2/ins 2/sub 3/del 4/del
v 4/ins-all 3/ins 2/ins 2/ins 1/nop 2/del 3/del 4/del
a 3/ins-all 2/ins 1/nop 1/transp 2/del 3/del 4/del 5/del
r 2/ins-all 1/ins 1/sub 1/nop 2/del 3/del 4/del 5/del
c 1/ins-all 0/nop 1/del 2/del 3/del 4/del 5/del 6/del

0/del-all 1/del-all 2/del-all 3/del-all 4/del-all 5/del-all 6/del-all 7/del-all
c a r v i n g

c a r v i n g
nop transp nop sub nop del
c r a v e n



Coming up:

▶ Reading from J&M, Section 2.5 (Fri, Sept 1)

▶ Regular expressions assignment (Fri, Sept 1)

▶ Edit distance quiz (Tues, Sept 5)

▶ Edit distance assignment (Fri, Sept 8)

▶ Reading from Stone (see Canvas) (Wed, Sept 6)

Next time: A quick tour of information theory


