
Edit distance and information theory units:

▶ The edit distance problema nd algorithm (today)

▶ A quick tour of information theory (next week Wednesday)

▶ Lab: Autoregressive text generation (next week Friday)

Today:

▶ Follow-up on regex chatbot

▶ The idea of edit distance

▶ The minimum edit distance problem

▶ The minumum edit distance algorithm
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Versions of the minimum edit distance:

▶ Substitutions only: Hamming distance. (Richard Hamming, 1950)

▶ Insertions and deletions: Longest common subsequence.

▶ Substitutions, insertions, and deletions: Levenshtein distance. (Vladimir
Levenshtein, 1966)

▶ Substitutions, insertions, deletions, and transpositions: Damerau-Levenshtein
distance. (Fred Damerau, 1964)



recieve
del−→ receve

ins−→ receive versus recieve
transp−→ receive

seperate
del−→ seprate

ins−→ separate versus seperate
sub−→ separate



definitely

defitely defiately

defiantely defiantlydefianitely

defiintely

defiitely

tra
nsp

del

insdel

ins del del

sub

ins



6 craven craven craven craven craven craven craven craven

c ca car carv carvi carvin carving

5 crave crave crave crave crave crave crave crave

c ca car carv carvi carvin carving

4 crav crav crav crav crav crav crav crav

c ca car carv carvi carvin carving

3 cra cra cra cra cra cra cra cra

c ca car carv carvi carvin carving

2 cr cr cr cr cr cr cr cr

c ca car carv carvi carvin carving

1 c c c c c c c c

c ca car carv carvi carvin carving

0
c ca car carv carvi carvin carving
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D[i ][j ] =



0 if i = j = 0 (Empty prefixes:
do nothing)

j · C [0] if i = 0 and j > 0 (Empty prefix
of a: insert all
the b prefix)

i · C [1] if i > 0 and j = 0 (Empty prefix
of b: delete all
the a prefix)

min



C [0] + D[i − 1][j ] (insertion)
C [1] + D[i ][j − 1] (deletion)
C [2] + D[i − 1][j − 1] (substitution)
C [3] + D[i − 2][j − 2] if a[i − 1] = b[j − 2] (transposition)

and a[i − 2] = b[j − 1]
D[i − 1][j − 1] if a[i − 1] = b[j − 1] (nop)

 Otherwise



n 6/ins-all 5/ins 4/ins 4/ins 3/ins 3/ins 2/nop 3/del
e 5/ins-all 4/ins 3/ins 3/ins 2/ins 2/sub 3/del 4/del
v 4/ins-all 3/ins 2/ins 2/ins 1/nop 2/del 3/del 4/del
a 3/ins-all 2/ins 1/nop 1/transp 2/del 3/del 4/del 5/del
r 2/ins-all 1/ins 1/sub 1/nop 2/del 3/del 4/del 5/del
c 1/ins-all 0/nop 1/del 2/del 3/del 4/del 5/del 6/del

0/del-all 1/del-all 2/del-all 3/del-all 4/del-all 5/del-all 6/del-all 7/del-all
c a r v i n g

c a r v i n g
nop transp nop sub nop del
c r a v e n



Coming up:

▶ Reading from J&M, Section 2.5 (Fri, Sept 1)

▶ Regular expressions assignment (Fri, Sept 1)

▶ Edit distance quiz (Tues, Sept 5)

▶ Edit distance assignment (Fri, Sept 8)

▶ Reading from Stone (see Canvas) (Wed, Sept 6)

Next time: A quick tour of information theory


