Language model unit:

- What a language model is
- Analogy with human language models
- Extrinsic evaluation
- Intrinsic evaluation
- Statistics about words
- n-grams
- Counts, hapaxes, ranks
- Zipf's law
- Basic language models
- Training and testing
- Maximum likelihood
- Unigram, bigram, trigram
- Smoothing
- What's wrong with maximum likelihood
- Laplace smoothing
- What's wrong with Laplace smoothing
- Good-Turing smoothing
- Principle
- Practice
- Linear interpolation
- Alternate approaches

Language technology	Source	Channel	Observation
Text decompression	Original text	Compressor	Compressed text
Sentiment analysis	Writer's sentiment	Writing process	Text whose sentiment is to be determined
Spelling correction	Correctly spelled word	Typing process	Possibly misspelled word
POS tagging	POS	Writing process	Word
Machine translation	Text in target language	Writing process	Text in original language
$\frac{P(O \mid S) P(O)}{P(S)}=\arg \max P(O \mid S) P(O)$			

Bird identification. Yesterday while driving near Waterman IL (my family was coming home from Honey Hill orchard) I saw a kind of bird I couldn't identify. It was from a bit of a distance, so my description is sketchy, but here goes:

It was medium size, maybe comparable to a dove or pigeon. The color that stood out at a distance was a sort of reddish brown; when it flew I could see white underparts. There were several on the ground--in the fields, roadside, and road itself. What was most noticeable was that it ran pretty fast along the road, taking to the air only when the car approached.

Anyone want to take a guess at a kind of bird that runs well and would be common in agricultural areas a couple counties to the west but not as common in the suburbs and forest preserves of DuPage? Thanks.

Posted in General to Anyone

- 2 Neighbors

6 Comments
\bigcirc Like
Q Comment
\Leftrightarrow Share
\Longrightarrow Repost

Badar Zulqarni • South Wheaton
It could be killdeer. https://images.app.goo.gl/nrGUoEU2XjsWT4Ax9 1 day ago Like Reply Share
C. Margaret T. - Wiesbrook

Agree!
1 day ago Like Reply Share
Elizabeth Stoffel • Winfield
Did you notice the sound they made? Kildeer have a unique song/call...
1 day ago Like Reply Share
T Thomas VanDrunen • Johnson
Thanks all. From what I've read just now about killdeer, I think that's probably what it was. At any rate, I wouldn't have recognized a killdeer.
(I couldn't hear the call, I just saw them while driving by.)
21 hrago Like Reply Share
$P\left(\begin{array}{l|l}\text { it's a } & \text { I don't } \\ \text { killdeer } & \left.\begin{array}{l}\text { recognize it }\end{array}\right)\end{array}\right.$
$=\frac{P\left(\begin{array}{l|l}\mathrm{I} \text { don't } \\ \text { recognize it } & \begin{array}{l}\text { it's a } \\ \text { killdeer }\end{array}\end{array}\right) \cdot P\binom{\text { it's a }}{\text { killdeer }}}{P\binom{\text { l don't }}{\text { recognize it }}}$
$=\frac{P\binom{\text { it's a }}{\text { killdeer }}}{P\binom{\text { don't }}{\text { recognize it }}}$

It was breakfast time.
Father was eating his egg.
Mother was eating her egg.
Gloria was sitting in a high chair and eating her egg too.
Frances was eating bread and jam.
"What a lovely egg!" said Father.
"It is just the thing to start the day off right," said Mother.

Frances did not eat her egg.

9
Russell Hoban and Lillian Hoban, Bread and Jam for Frances. I Can Read edition 2008; originally published 1964

```
P(Frances did not eat her egg)
    = P(egg|Frances did not eat her)}\cdotP(\mathrm{ Frances did not eat her)
    = P(egg |...)}\cdotP(\mathrm{ her Frances did not eat)}\cdotP(\mathrm{ Frances ...eat)
```

$$
P\left(w_{1: n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1: 2}\right) \cdots P\left(w_{n} \mid w_{1: n-2}\right)
$$

$$
P\left(w_{n} \mid w_{1: n-1}\right) \approx P\left(w_{n} \mid w_{n-1}\right) \text { or } P\left(w_{n} \mid w_{n-2} w_{n-1}\right)
$$

Perplexity (and logs)

$$
\begin{gathered}
P\left(w_{0} \cdots w_{K-1}\right)^{\frac{-1}{K}}=\sqrt[K]{\frac{1}{P\left(w_{0} \cdots w_{K-1}\right)}} \\
=\left(\prod_{i=0}^{K-1} P\left(w_{i} \mid h\right)\right)^{\frac{-1}{K}}=\sqrt[K]{\frac{1}{\prod_{i=0}^{K-1} P\left(w_{i} \mid h\right)}} \\
=2^{\frac{-1}{K} \sum_{i=0}^{K-1} \lg P\left(w_{i} \mid h\right)} \\
\lg x y=\lg x+\lg y \\
\lg x^{y}=y \lg x \\
2^{\lg x}=x
\end{gathered}
$$

Interpretation of perplexity:
We suspect that speech recognition people prefer to report on the larger nonlogarithmic numbers given by perplexity mainly because it is much easier to impress funding bodies by saying that "we've managed to reduce perplexity from 950 to only 540" than by saying that "we've reduced cross entropy from 9.9 to 9.1 bits." However, perplexity does also have an intuitive reading: a perplexity of k means that you are as surprised on average as you would have been if you had had to guess between k equiprobable choices at each step. Manning and Schütze, Foundations of Statistical Natural Language Processing, pg 78.

Summary so far (i.e., summary from last time)

- A language model is a probability function for linguistic events. Words: $P(w) \quad$ Word sequences: $P\left(w_{0} w_{1}\right), P\left(W_{0: N}\right) \quad$ Words in context: $P(w \mid h)$
- Humans have a natural language model.
- How good is a language model? We can evaluate a language model
- Extrinsically: Measure the performance of a tool that uses the language model (example-text decompressor).
- Intrinsically: Compute the perplexity of a language model on a test text.
- Perplexity is a measure of how "surprised" the language model is by the text text.
- Perplexity is the inverse probability of the test text normalized (geometric mean) by the size of the text.

$$
\sqrt[K]{\frac{1}{P\left(w_{0} \cdots w_{K-1}\right)}}=\left(\prod_{i=0}^{K-1} P\left(w_{i} \mid h\right)\right)^{\frac{-1}{K}}=2^{\frac{-1}{K} \sum_{i=0}^{K-1} \lg P\left(w_{i} \mid h\right)}
$$

- Language models are trained on textual data. By exploring textual data, we can observe
- The most common words are function words.
- The most common non-stopwords reveal subject matter and genre.
- A type's frequency is proportional to the inverse of its rank (Zipf's law)

$$
f \cdot r=C \quad f \propto \frac{1}{r}
$$

- The frequency of various n-grams changes over time.

A stationary process is one that does not change over time. This is clearly wrong for language: new expressions regularly enter the language while others die out. ... Nevertheless, for a snapshot of text from a certain period, we can assume that the language is near enough to unchanging, and so this is an acceptable approximation to truth.

Manning and Schütze, Foundations of Statistical Natural Language Processing, pg 76.
The assumption that the probability of a word depends only on the previous word is called a Markov assumption. Markov models are the class of probabilistic models that assume we can predict the probability of some future unit without looking too far into the past.

Jurafsky and Martin, Speech and Language Processing 3e, §3.1

Maximum Likelihood Fallacy

"Which road leads to the Wicked Witch of the West?" asked Dorothy.
"There is no road," answered the Guardian of the Gates. "No one ever wishes to go that way."
"How, then, are we to find her?" inquired the girl.
"That will be easy," replied the man, "for when she knows you are in the country of the Winkies she will find you, and make you all her slaves."
"Perhaps not," said the Scarecrow, "for we mean to destroy her."
"Oh, that is different," said the Guardian of the Gates. "No one has ever destroyed her before, so I naturally thought she would make slaves of you, as she has of the rest. "

F Baum, The Wonderful Wizard of Oz

Perspectives on the maximum likelihood fallacy

- MLE is biased high for rare events and (infinitely) low for unseen events.
- Rare events are given too much probability mass, unseen events are given too little.
- Predicting the future is not the same thing as predicting a randomly chosen past event.
- If a word occurs once in training, what is most likely?
- That word actually does occur about once every N tokens.
- The word is actually more common than $\frac{1}{N}$, but got unlucky in training.
- The word is actually less common than $\frac{1}{N}$, but was lucky to be in the training set at all.

Good-Turing smoothing

Let r range over frequencies; $r=C(w)$ for some $w \in V$.
Let n_{r} be the number of types that occur exactly r times in the training text. n_{r} is the frequency of frequency r.

$$
n_{r}=|\{w \in V \mid C(w)=r\}|
$$

Thus n_{1} is the number of hapaxes, and n_{0} is the number of unseen words.

$$
\begin{aligned}
\sum_{r=0}^{\infty} n_{r} & =V \\
\sum_{r=0}^{\infty}\left(r \cdot n_{r}\right) & =N
\end{aligned}
$$

Axiom 1. Good-Turing smoothing is good.
Axiom 2. Frequency (as frequency rank) vs frequency of frequency follows Zipf's law.
Theorem. Laplace smoothing is bad. (Gale and Church, 1994) Proof. Suppose Laplace smoothing is good. Then, by Axiom 1, its formula would reduce to the formula for Good-Turing, that is,

$$
\begin{array}{rlrl}
\frac{(r+1) n_{r+1}}{N n_{r}} & =\frac{r+1}{N+V} & & \text { by equating Lapace and } G T \text { probabilities } \\
\frac{n_{r+1}}{n_{r}} & =\frac{N}{N+V} & & \\
n_{r+1} & =\frac{N}{N+V} n_{r} & \\
n_{r} & =\frac{N}{N+V} n_{r-1} & & \text { by change type with count } r
\end{array}
$$

By Axiom 2, Zipf's law predicts $n_{r}=\frac{c}{r}$ for some c. Contradiction.

Good-Turing with Katz's k cut off:

$$
P_{G T-K a t z}(w)=\left\{\begin{array}{lll}
\frac{n_{1}}{N n_{0}} & \text { if } C(w)=0 & \text { (unseen words) } \\
\frac{(r+1) \frac{n_{r+1}}{n_{r}}-r \frac{(k+1) \cdot n_{k+1}}{n_{1}}}{N\left(1-\frac{(k+1) \cdot n_{k+1}}{n_{1}}\right)} & \text { if } 1 \leq r=C(w) \leq k & \text { (rare words) } \\
\frac{C(w)}{N} & \text { otherwise } & \text { (common words) }
\end{array}\right.
$$

Theorem. If each constituent language model P_{j} is a proper language model and $\sum_{j=0}^{k-1} \lambda_{j}=1$, then $P_{L I}$ is a proper language model.

Proof. Suppose all that. Then

$$
\begin{aligned}
\sum_{w \in V} P_{L I}(w) & =\sum_{w \in V} \sum_{j=0}^{k-1} \lambda_{j} P_{j}(w) \\
& =\sum_{j=0}^{k-1} \sum_{w \in V} \lambda_{j} P_{j}(w) \\
& =\sum_{j=0}^{k-1} \lambda_{j} \sum_{w \in V} P_{j}(w) \\
& =\sum_{j=0}^{k-1} \lambda_{j}=1
\end{aligned}
$$

Coming up:

- Huffman encoding assignment (Friday, Sept 15)
- Ngram quiz (Tues, Sept 12)
- Reading from J\&M, Sections 3.(0-8) (Wed, Sept 13)
- Google NGram assignment (Wed, Sept 13)
- Language model quiz (Tues, Sept 19)
- Language model programming assignment (Fri, Sept 22)
- Reading from J\&M, Sections 8.(0-4) (Fri, Sept 22)

