Regular expressions unit:

- Regular expressions—principles and Python (today)
- Lab: Building a RegEx-based chatbot (Wednesday)
- The edit distance algorithm [stand alone topic] (Friday)

Today:

- Wrap-up and review of concepts from last week
- Why we care about regular expressions
- Review and practice of regular expressions by definition
- Overview and demo of regular expressions in Python
type. A sequence of characters, independent of occurrence.
token. An occurrence of a type.
lexeme. A dictionary entry; a set of types associated together with a definition, etymology, etc.
wordform. One of the associated types of a lexeme; an inflectional form of a lexeme.
lemma. The headword in a dictionary entry; a wordform that serves as the canonical representative of a lexeme.
corpus. A collection of texts; a dataset for natural language processing. vocabulary. The set of types in a corpus.

J\&M ambiguously uses lemma to mean either lemma or lexeme.
Word type or word token are sometimes used to distinguish from other uses of the terms type and token.

- An alphabet is a set of symbols, Σ.
- A string over an alphabet is a sequence of symbols from that alphabet. $\Sigma *$ is the set of all strings over alphabet Σ.
- A language over an alphabet is a set of strings, that is, a subset of Σ.
- Regular expressions constitute a system for specifying languages. (J\&M, "a language for specifying text search strings", pg 3.). An individual regular expression denotes a language, that is, a set of strings.

base | cases |
| :--- | :--- | \(\begin{cases}\emptyset \& the empty set of strings \\

\varepsilon \& the set containing the empty string,\{" "\} \\
a \& the set containing only the string with only a, \\
\& for some a \in \Sigma,\{" a "\}\end{cases}\)
recursive $\quad\left\{\begin{array}{l}r s \quad \begin{array}{l}\text { the set of strings made from concatening strings from } r \text { and } s, \\ \{x+y \mid x \in r \wedge y \in s\}, \text { for some regular expressions } r \text { and } s\end{array} \\ r \left\lvert\, s \begin{array}{l}\text { the set of strings from } r \text { or } s, r \cup s\end{array}\right. \\ \begin{array}{l}\text { for some regular expressions } r \text { and } s \\ \text { the set of strings made from concatenating } 0 \text { or more strings from } r \\ \text { for some regular expression } r\end{array}\end{array}\right.$

Abbreviation	Meaning	Equivalence
[abc]	One occurrence of any of these symbols	$(\mathrm{a}\|\mathrm{b}\| \mathrm{c})$
$[\mathrm{a}-\mathrm{c}]$	One occurrence of any symbol in this range	$(\mathrm{a}\|\mathrm{b}\| \mathrm{c})$
$r ?$	Optionally an occurrence of a string defined by r	$(r \mid \varepsilon)$
r^{5}	5 occurrences of a string defined by r	$r r r r r$
$r^{3,5}$	Between 3 and 5 occurrences of a string defined by r	$(r r r\|r r r r\| r r r r)$
$r+$	One or more occurrences of a string defined by r	$r r *$

- DNA sequences: ($\mathrm{A}|\mathrm{C}| \mathrm{G} \mid \mathrm{T}$)*
- Identifiers: (($\left.\mid \varepsilon)[A-Z a-z]\left[A-Z a-z 0-9 _\right]\right)\left.\right|_{-}$
- Phone numbers: $[2-9][0-9]^{2}-[2-9][0-9]^{2}-[0-9]^{4}$
- Dates: $((1[0-2]) \mid[1-9]) /(30|31|([12][0-9]) \mid[1-9]) /[1-9][0-9]^{0,3}$
- US Postal Addresses: [0-9] + [NSEW] ${ }^{0,2}$ [A-Z] [a-z]* (St|Ave|Rd|Ln \mid Dr \mid Blvd), $([A-Z][a-z] *) *,[A-Z]^{2}[0-9]^{5}$
$\backslash \mathrm{b}[\mathrm{a}-\mathrm{z}]\{3,4\} \backslash \mathrm{b} \quad[$ aeiou $] l \mathrm{~b} \backslash \mathrm{~b} \quad[$ aeiou $]\{2\} \quad$ a.e

Lord, you have been our dwelling place in all generations.

Coming up:

- Read J\&M, Sections 2.(0-4) (Mon, Aug 28)
- Python warm-up assignment (Tues, Aug 29)
- Regular expressions quiz (Tues, Aug 29)
- Words and corpora quiz (Thurs, Aug 31)
- Read J\&M, Section 2.5 (Fri, Sept 1)
- Regular expressions assignment (Fri, Sept 1)

Next time: Regular expression chatbot in the lab.

