
Vector semantics and embeddings unit

▶ Lexical semantics, words as vectors (last week Monday)

▶ Catch-up day (last week Wednesday)

▶ Word2Vec (last week Friday)

▶ Finish Word2Vec (today)

▶ Overview of neural nets (Wednesday)

▶ Neural-net language models, in lab (Friday)

Today:

▶ Review of premise and elements

▶ Details of the training algorithm

▶ Observing results

▶ Problems with data-driven methods

Goal: Find word embeddings, vectors that represent words in a semantic space.

Word2vec premise: Train a classifier on a “fake” task and use that classifier’s
weights/parameters as word embeddings.

Word2vec algorithm outline: Given an corpus,

▶ Find the vocabulary of the corpus

▶ Collect training data from the corpus

▶ Train a classifier on that data

▶ Return the classifier’s weights

The classification task: Given target word w and potential context word c , is c
likely (or, how likely is c) to be used near w? That is, is c a true context word for w?

Alice looked all around her at the flowers
c0 c1 w c2 c3

The training data: For every token w in the corpus, pair it with the tokens found L
positions before it and L positions after it (positive examples). For every positive
example, find k randomly chosen negative examples.

w cpos cneg0
cneg1

cneg2

around looked pineapple earnestly asleep
around all . . .
around her . . .
around at . . .

Algorithm parameters:
L, window size (L = 2 above)
k , number of negative samples (k = 3 above)

Choosing negative samples:

For training a binary classifier, we also need negative examples. . . . [For each
training instance,] we’ll create k negative samples, each consisting of a target
w plus a “noise word” cneg . A noise word is a random word from the lexicon,
constrained not to be the target word w. . . .
The noise words are chosen according to their weighted unigram frequency
pα(w), where α is a weight. . . .

pα(w) =
count(w)α∑
w ′ count(w ′)α

[Weighting p, for example at α = .75] gives better performance because it gives
rare noise words slightly higher probability: for rare words, Pα(w) > P(w).

Jurafsky and Martin, 6.8.2, pg 20–21

The classifier: Logistic regression

P(+ | w , c) = σ(www · ccc)

where

▶ P(+ | w , c) is the probability c is a context word for w .

▶ www is a vector for w as a target word.

▶ ccc is a vector for c as a context word.

▶ www · ccc is the dot product

▶ σx = 1
1+exp(−x) is the logistic (sigmoid) function.

Parameters to the classifier: W and C, each V × D matrices.

Parameter to the algorithm: D, length of embedding

The loss function: The cross-entropy (negative log likelihood) loss. For a given data
point (w , cpos , cneg0

, . . . cnegk−1
), the loss is

−

(
log σ(cposcposcpos ·www) +

k−1∑
i=0

log σ(−cneg i
cneg i
cneg i

·www)

)
The training algorithm: Stochastic gradient descent. For each data point
(w , cpos , cneg0

, . . . cnegk−1
),

cposcposcpos − = η(σ(cposcposcpos ·www)− 1)www

cneg i
cneg i
cneg i

− = η(σ(cneg i
cneg i
cneg i

·www))www

www − = η
(
(σ(cposcposcpos ·www)− 1)cposcposcpos +

∑k−1
i=0 (σ(cneg i

cneg i
cneg i

·www))cneg i
cneg i
cneg i

)
Parameter to the algorithm: η, the learning rate

Coming up:

▶ Read J&M chapter7 (Mon, Nov 13)

▶ Work on stylo assignment

Word2Vec assignment coming. . .

