Vector semantics and embeddings unit

» Lexical semantics, words as vectors (last week Monday)
» Catch-up day (last week Wednesday)

» Word2Vec (last week Friday)

» Finish Word2Vec (today)

» Overview of neural nets (Wednesday)

>

Neural-net language models, in lab (Friday)

Today:

» Review of premise and elements
» Details of the training algorithm
» Observing results

» Problems with data-driven methods



Goal: Find word embeddings, vectors that represent words in a semantic space.

Word2vec premise: Train a classifier on a “fake” task and use that classifier's
weights/parameters as word embeddings.

Word2vec algorithm outline: Given an corpus,
» Find the vocabulary of the corpus
» Collect training data from the corpus
» Train a classifier on that data

» Return the classifier's weights



The classification task: Given target word w and potential context word ¢, is ¢
likely (or, how likely is c) to be used near w? That is, is ¢ a true context word for w?

Alice looked all around her at the flowers
(@) (5] w C2 c3

The training data: For every token w in the corpus, pair it with the tokens found L
positions before it and L positions after it (positive examples). For every positive
example, find k randomly chosen negative examples.

w Cpos Cheg, Cneg, Cneg,
around | looked pineapple earnestly asleep
around all
around her
around at

Algorithm parameters:
L, window size (L = 2 above)
k, number of negative samples (k = 3 above)



Choosing negative samples:
For training a binary classifier, we also need negative examples. ... [For each
training instance,] we'll create k negative samples, each consisting of a target
w plus a “noise word” cpeg. A noise word is a random word from the lexicon,
constrained not to be the target word w. ...
The noise words are chosen according to their weighted unigram frequency
Pa(w), where « is a weight. ...

count(w)“
W count(w’)e

pOé(W) = Z

[Weighting p, for example at o« = .75] gives better performance because it gives
rare noise words slightly higher probability: for rare words, P,(w) > P(w).
Jurafsky and Martin, 6.8.2, pg 20-21



The classifier: Logistic regression

P(+ | w,c)=0(w-c)
where
» P(+ | w,c) is the probability ¢ is a context word for w.
w is a vector for w as a target word.
c is a vector for ¢ as a context word.

w - C is the dot product

1

| 2
>
>
> = Trexp(—x)

ox is the logistic (sigmoid) function.

Parameters to the classifier: W and C, each V x D matrices.

Parameter to the algorithm: D, length of embedding



The loss function: The cross-entropy (negative log likelihood) loss. For a given data
point (W, Cpos, Cnegy» - - - Cneg,_, )» the loss is

k-1
- (Iog 0(Cpos - W) + Z log o(—Cneg; - w))

i=0
The training algorithm: Stochastic gradient descent. For each data point

(W, Cposs Cnegys - - - Cnegk_l)r
Cpos — = n(a(CPOS ' W) - ].)W
Cneg; — = 11(0(Cneg; - W))W
w —= 1 ((U(Cpos W) — 1)Cpos + Zf(;ol(a(cnegi : w))c,,eg,.)

Parameter to the algorithm: 7, the learning rate



Coming up:
» Read J&M chapter7 (Mon, Nov 13)
> Work on stylo assignment

Word2Vec assignment coming. ..



