Chapter 6 outline:

 Introduction, function equality, and anonymous functions (week-before Wednesday)

- Image and inverse images (week-before Friday)
- Function properties and composition (last week Monday)
- Map, reduce, filter (last week Wednesday)
- Cardinality (last week Friday)
- Countability plus practice quiz (Today)
- Review (Wednesday)
- Test 3, on Ch 5 & 6 (Friday)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 ∽੧<⊙

Assume A and B are finite sets.

Ex 6.6.1. If $A \subseteq B$, then |B - A| = |B| - |A|. **Ex 6.6.2.** If $A \subseteq B$, then $|A| \le |B|$. Two finite sets X and Y have the same cardinality as each other if there exists a one-to-one correspondence from X to Y.

To use this *analytically*:

Suppose X and Y have the same cardinality. Then let f be a one-to-one correspondence from X to Y.

f is both onto and one-to-one.

To use this *synthetically*:

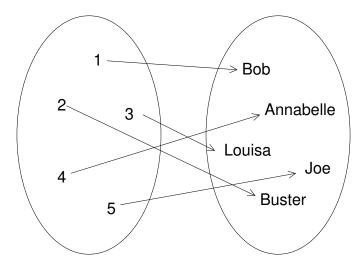
Given sets X and Y ...

[Define f] Let $f : X \to Y$ be a function defined as ...

Suppose $y \in Y$. Somehow find $x \in X$ such that f(x) = y. Hence f is onto. Suppose $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Somehow show $x_1 = x_2$. Hence f is one-to-one.

Since f is a one-to-one correspondence, X and Y have the same cardinality as each other.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as |X| = n, if there exists a one-to-one correspondence from $\{1, 2, \dots n\}$ to X. Moreover, $|\emptyset| = 0$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Two finite sets X and Y have the *the same cardinality* as each other if there exists a one-to-one correspondence from X to Y.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as |X| = n, if there exists a one-to-one correspondence from $\{1, 2, \dots n\}$ to X. Moreover, $|\emptyset| = 0$.

Given a set X, if there exists $n \in \mathbb{N}$ and a one-to-one correspondence from $\{1, 2, ..., n\}$ to X, then X is *finite* and |X| = n. Otherwise, X is *infinite*.

Are all infinities equal?

Which is more intuitive to you,

$$|\mathbb{N}| = |\mathbb{W}| = |\mathbb{Z}| = |\mathbb{Q}| = |\mathbb{R}|$$

or

?

 $|\mathbb{N}| < |\mathbb{W}| < |\mathbb{Z}| < |\mathbb{Q}| < |\mathbb{R}|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

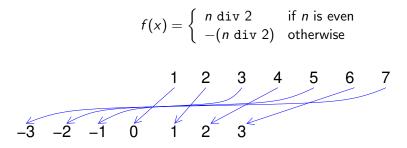
Thm 6.15. \mathbb{W} and \mathbb{N} have the same cardinality.

Proof. [We need a one-to-one correspondence from \mathbb{N} to \mathbb{W} .] Let $f : \mathbb{W} \to \mathbb{N}$ be defined so that f(n) = n + 1. Suppose $n \in \mathbb{N}$. Then f(n-1) = (n-1) + 1 = n, so f is onto. Next suppose $n_1, n_2 \in \mathbb{N}$ such that $f(n_1) = f(n_2)$. Then $n_1 + 1 = n_2 + 1$, and moreover $n_1 = n_2$. Hence f is one-to-one. Since a one-to-one correspondence exists between \mathbb{W} and \mathbb{N} , the two sets have the same cardinality. \Box

A set X is *countably infinite* if there exists a one-to-one correspondence from \mathbb{N} to X. A set is *countable* if it is finite or countably infinite. Otherwise it is *uncountable*.

Thm 6.16. \mathbb{Z} is countably infinite.

Proof. [We need a one-to-one correspondence from \mathbb{N} to \mathbb{Z} .] Let $f : \mathbb{N} \to \mathbb{Z}$ be defined so that

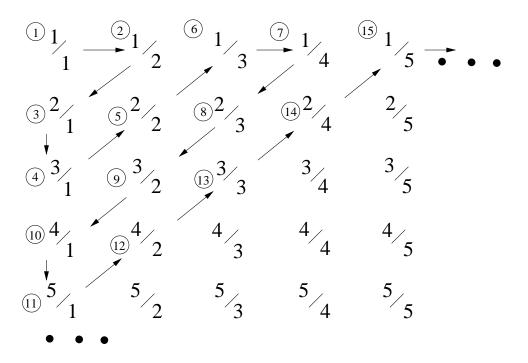


Since f is a one-to-one correspondence, \mathbb{Z} is countably infinite. \Box

(日) (部) (注) (注) (注)

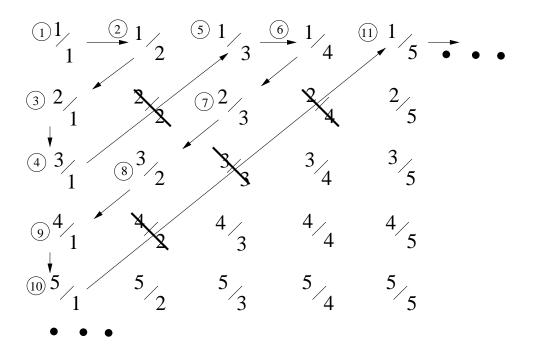
 $\frac{1}{5}$ • • • 2/3 2 2 2_{1} $\frac{2}{2}$ 3/3 3/2 3 3/4 3 4 4 4 4/2 4 5 5 5/2 5_4 5

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶



```
def next_seat(bus_number, seat_number) :
return ((1, seat_number+1) if bus_number == 1 and seat_number%2==1
else (bus_number+1, 1) if seat_number == 1 and bus_number%2==0
else (bus_number-1, seat_number+1) if (seat_number + bus_number)%2==0
else (bus_number+1, seat_number-1))
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○



Thm 6.17. \mathbb{Q}^+ is countably infinite.

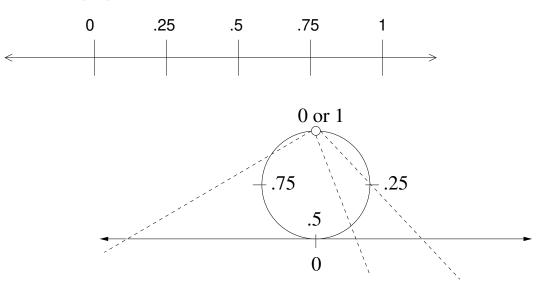
So,

$$|\mathbb{N}| = |\mathbb{W}| = |\mathbb{Z}| = |\mathbb{Q}|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へで

What about \mathbb{R} ?

Thm 6.18. (0,1) has the same cardinality as \mathbb{R} .



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thm 6.19. (0, 1) is uncountable.

Proof. Suppose (0,1) is countable. Then there exists a one-to-one correspondence $f : \mathbb{N} \to (0,1)$. We will use f to give names to the all the digits of all the numbers in (0,1), considering each number in its decimal expansion, where each $a_{i,i}$ stands for a digit.:

$$\begin{array}{rcl} f(1) &=& 0.a_{1,1}a_{1,2}a_{1,3}\ldots a_{1,j}\ldots \\ f(2) &=& 0.a_{2,1}a_{2,2}a_{2,3}\ldots a_{2,j}\ldots \\ &\vdots \\ f(x) &=& 0.a_{x,1}a_{x,2}a_{x,3}\ldots a_{x,j}\ldots \\ &\vdots \end{array}$$

Now construct a number $d = 0.d_1d_2d_3...d_i...$ as follows

$$d_i = \begin{cases} 1 & \text{if } a_{i,i} \neq 1 \\ 2 & \text{if } a_{i,i} = 1 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 -

Since $d \in (0,1)$ and f is onto, there exists an $x \in \mathbb{N}$ such that f(x) = d. Moreover,

$$f(x) = 0.a_{x,1}a_{x,2}a_{x,3}\ldots a_{x,x}\ldots$$

SO

$$d=0.a_{x,1}a_{x,2}a_{x,3}\ldots a_{x,x}\ldots$$

by substitution. In other words, $d_i = a_{x,i}$, and specifically $d_x = a_{x,x}$. However, by the way that we have defined d, we know that $d_x \neq a_{x,x}$, a contradiction. Therefore (0,1) is not countable. \Box

For next time:

(No HW exercises)

Take quiz on cardinality and countability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで