
Chapter 5, Dynamic Programming:

▶ Introduction and sample problems (Today)

▶ Principles of DP (Wednesday)

▶ DP algorithms, solutions to sample problems (next week Monday)

▶ Review for Test 2 (next week Wednesday)

▶ Test 2 (next week Thursday, in lab)

▶ No class (next week Friday)

▶ Optimal BSTs (week-after Monday)

Today:

▶ Goals of the unit

▶ Overlapping subproblems

▶ The coin-changing problem

▶ (Time permitting) Three sample problems



What dynamic programming is:
An algorithmic technique for efficiently solving an optimization problem with
overlapping subproblems by storing the results of subproblems in a table.

Our goals for dynamic programming in CSCI 345:

▶ Know what dynamic programming is and what kind of problems it applies to.

▶ Understand the principles of dynamic programming and the terminology used to
talk about it.

▶ Be able to take a problem and its recursive characterization (the mathematical
formulation of its solution) and code up an algorithm to compute the maximum
value or minimum cost.

Not goals in CSCI 345 (come back for DP unit in CSCI 445):

▶ Be able to take a problem and devise a recursive characterization.

▶ Having devised a recursive characterization, be able to code up an algorithm to
compute the maximum value or minimum cost and to reconstruct the optimal
solution.



Fn =


0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

fib(0)

fib(6)

fib(5) fib(4)

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2) fib(2) fib(1) fib(2) fib(1) fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0) fib(1) fib(0)

fib(1)



Recursive characterization. A formula relating problems to subproblems of the same
kind.

Overlapping subproblems. The situation when the recursion tree for a formula contains
multiple instances of the same subproblem.

Memoization. Storing the results of subproblems for later retrieval.

Top-down approach. Beginning the computation of a recursive formula from the
top-level problem, computing subproblems on-demand.

Bottom-up approach. Beginning the computation of a recursive formula from the base
cases and building the results of other subproblems from there.



Given an amount a and a list of coin denominations D, find a list of coin quantities L
such that

n−1∑
i=0

D[i ]L[i ] = a

and that minimizes
∑n−1

i=0 L[i ]

The minimum number of coins is

min
L

n−1∑
i=0

L[i ]

The bag of coins that minimizes that number is

argmin
L

n−1∑
i=0

L[i ]



Imagine a system with coins [1, 3, 4, 6] and making change for for 14. Let C [i ][j ] stand
for the fewest number of coins needed to make change for amount i using only coins 0
through j .

C [14][3] = min


0 + C [14][2] no hexes plus best change for 14 with remaining coins
1 + C [8][2] one hex plus best change for 8 with remaining coins
2 + C [2][2] two hexes plus best change for 2 with remaining coins

C [14][3] = min


0 + C [14][2] = 0 + 4 = 4
1 + C [8][2] = 1 + 2 = 3
2 + C [2][2] = 2 + 2 = 4



Let C [i ][j ] stand for the fewest number of coins needed to make change for amount i
using only coins 0 through j .

C [i ][j ] =



0 if i = 0

i if j = 0

min0≤k< i
D[j]

{k + C [i − k · D[j ]][j − 1]} otherwise



C[14][1] C[10][1] C[8][1] C[6][1] C[4][1] C[2][1] C[0][1]

C[8][2]C[14][2] C[2][2]

C[14][3]

C[14][0]

C[11][0]

C[10][0]

C[8][0]

C[7][0] C[5][0] C[4][0]

C[6][0]

C[3][0] C[1][0]

C[0][0]C[2][0]



0-1 Knapsack.
Given a capacity c and the value and weight of n items in arrays V and W ,
find a subset of the n items whose total weight is less than or equal to the
capacity and whose total value is maximal.

V 20 15 90 100
W 1 2 4 5

0 1 2 3

c = 7

set weight value
{2, 3} 9 190 exceeds capacity
{1, 3} 7 115 not optimal
{0, 1, 2} 7 125 optimal



Longest common subsequence.
Given two sequences, find the longest subsequence that they have in common.

D A T A S T R U C T U R E S
A L G O R I T M S

A A A A A B
A B A A A A

not
A A A A A B
A B A A A A

A A A A A B A A A A
A B A A A A

not
A A A A A B A A A A
A B A A A A



Matrix multiplication.
Given n + 1 dimensions of of n matrices to be multiplied, find the optimal
order in which to multiply the matrices, that is, find the parenthesization of
the matrices that will minimize the number of scalar multiplications.

Assume the following matrices and dimensions: A, 3× 5; B, 5× 10; C , 10× 2,
D, 2× 3; E , 3× 4.

(A× B)× (C × (D × E )) 3 · 5 · 10 + 2 · 3 · 4 + 10 · 2 · 4 + 3 · 10 · 4 = 374

(A× (B × C ))× (D × E ) 5 · 10 · 2 + 2 · 3 · 4 + 3 · 5 · 2 + 3 · 2 · 4 = 178

A× (B × (C × (D × E ))) 2 · 3 · 4 + 10 · 2 · 4 + 5 · 10 · 4 + 3 · 5 · 4 = 364



Problem Thing to find Optimization Constraint

Coin-changing A set of coins. Minimize the number of coins. The coins’ values sum to the
given amount.

Knapsack A set of objects Maximize the sum of the
objects’ values.

The sum of the objects’
weights doesn’t exceed the
given capacity.

Longest common
subsequence

A subsequence in each
of two given sequences.

Maximize the length of the
subsequences.

The subsequences have the
same content.

Matrix multiplication A way to parenthesize
the the matrices being
multiplied.

Minimize the number of scalar
multiplications required.

The parenthesization is
complete and mathematically
coherent.

Optimal BST A BST for a given set
of keys

Minimize the expected length
of a search.

The tree satisfies the criteria
for a BST.



Coming up:

Do Traditional RB project (due Wed, Nov 6)
(Recommended: Do LL RB project for your own practice)

Due Thurs, Nov 7 (end of day)
Read Section 6.(1&2)
Do Exercises 6.(5–7)
Take DP intro quiz

Due Fri, Nov 8 (end of day)
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz (DP principles)

Due Mon, Nov 11 (class time)
Read Section 6.4
Take quiz (DP algorithms)


