
Chapter 5, Dynamic Programming:

▶ Introduction (week-before Wednesday)

▶ Principles of DP, including sample problems (week-before Friday)

▶ DP algorithms, solutions to sample problems (last week Monday)

▶ Review for Test 2 (last week Wednesday)

▶ Test 2 (last week Thursday, in lab)

▶ No class (last week Friday)

▶ Optimal BSTs (Today)

▶ Begin Chapter 6, Hashtables (Wednesday)

Today:

▶ The optimal BST definition

▶ The optimal-BST-building problem

▶ The dynamic programming solution



Why this problem?

▶ It connects dynamic programming with the quest for a better map.

▶ Its hardness is in the right places (building the table—hard; reconstructing
solution—trivial).

▶ It is a representative of a bigger concept: What if we had more information—how
would that change the problem.

Game plan:

▶ Understand the problem itself

▶ Understand the recursive characterization

▶ Understand the table-building algorithm



The optimal binary search tree problem:

▶ Assume we know all the keys k0, k1, . . . kn−1 ahead of time.

▶ Assume further that we know the probabilities p0, p1, . . . pn−1 of each key’s
lookup.

▶ Assume even further that we know the “miss probabilities” q0, q1, . . . qn where qi
is the probability that an extraneous key falling between ki−1 and ki will be
looked up.

▶ We want to build a tree to minimize the expected cost of a look up, which is the
total weighted depth of the tree:

n−1∑
i=0

pi depth(ki ) +
n∑

i=0

qi depth(mi )

where depth(x) is the number of nodes to be inspected on the route from the
root to node x , ki stands for the node containing key ki [notational abuse], and
mi is the dummy node between keys ki−1 and and ki .

▶ Note that the rules of probability require
∑n−1

i=0 pi +
∑n

i=0 qi = 1



i 84 eat 24 ham 10 fox 7 rain 4
not 83 will 21 there 9 on 7 see 4
them 61 sam 19 train 9 tree 6 try 4
a 59 with 19 anywhere 8 say 5 boat 3
like 44 am 16 house 8 so 5 that 3
in 40 could 14 mouse 8 be 4 are 2
do 36 here 11 or 8 goat 4 good 2
you 34 the 11 box 7 let 4 thank 2
would 26 eggs 10 car 7 may 4 they 2
and 24 green 10 dark 7 me 4 if 1



Key or miss event combined frequency
{ } 0
a 59

{ am and anywhere are be boat box car could dark } 92
do 36

{ eat eggs fox goat good green ham here house } 86
i 84

{ if let } 5
in 40
{ } 0

like 44
{ may me mouse } 16

not 83
{ on or rain same say see so thank that the } 65

then 61
{ there they train tree try will with would } 99

you 34
{ } 0



0 1 2 3 4 5 6 7
ki a do i in like not then you

pi .073 .045 .104 .05 .055 .103 .076 .042
qi .001 .113 .107 .006 .001 .02 .081 .122 .001

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02 .081

.122

.001

in .05

you .042

.122 .001

.107a .073

.113.001

do .045

i .104

then .076

in .05

.001.006

.02

like .055

not .103

.081



1 · .02 + 1 · .081
= .101 +4 · .001 + 4 · .133 + 4 · .107 + 4 · .006
+3 · .073 + 3 · .104 + 3 · .001 + 3 · .042
+2 · .045 + 2 · .055
+1 · .05
= 3.857

.02 .081

1 1

1

2



2 · .02 + 2 · .081
+1 · .103 + 1 · .122
= .427 +3 · .073 + 3 · .104 + 3 · .001 + 3 · .042
+2 · .045 + 2 · .055
+1 · .05
= 3.857

not .103

.02

.122

.081

1

2 2

1

1

2



3 · .02 + 3 · .081
+2 · .103 + 2 · .122
+1 · .001 + 1 · .133 + 1 · .107 + 1 · .006 + 1 · .076 + 1 · .001
= 1.057 +2 · .045 + 2 · .055
+1 · .05
= 3.857

.001 .113 .107 .006 then .076

not .103

.02

.122

.001

.081

1 1 1

2

3 3

1

2

11

1



4 · .02 + 4 · .081
+3 · .103 + 3 · .122
+2 · .001 + 2 · .133 + 2 · .107 + 2 · .006 + 2 · .076 + 2 · .001
+1 · .073 + 1 · .104 + 1 · .001 + 1 · .042
= 1.907 +1 · .05
= 3.857

.001 .113 .107 .006

i .104a .073 .001 you .042

then .076

not .103

.02

.122

.001

.081

1 1 1

2 2 2

3

4 4

2

3

22

1

1



5 · .02 + 5 · .081
+4 · .103 + 4 · .122
+3 · .001 + 3 · .133 + 3 · .107 + 3 · .006 + 3 · .076 + 3 · .001
+2 · .073 + 2 · .104 + 2 · .001 + 2 · .042
+1 · .045 + 1 · .055
= 2.857 = 3.857

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

.081

2 2 2

3 3 3

4

5 5

3

4

33

2

11

1



6 · .02 + 6 · .081
+5 · .103 + 5 · .122
+4 · .001 + 4 · .133 + 4 · .107 + 4 · .006 + 4 · .076 + 4 · .001
+3 · .073 + 3 · .104 + 3 · .001 + 3 · .042
+2 · .045 + 2 · .055
+1 · .05
= 3.857

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

in .05

.081

1

3 3 3

4 4 4

5

6 6

4

5

44

3

22



4 · .001 + 3 · .073 + 4 · .133 + 2 · .045 + 4 · .107 + 3 · .104 + 4 · .006
+1 · .05
+3 · .001 + 2 · .055 + 6 · .02 + 6 · .081 + 4 · .076 + 5 · .122 + 3 · .042 + 4 · .001
= 3.857

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

in .05

.081

1

3 3 3

4 4 4

5

6 6

4

5

44

3

22



3 · .001 + 2 · .073 + 3 · .133 + 1 · .045 + 3 · .107 + 2 · .104 + 3 · .006
+.001 + .073 + .133 + .045 + .107 + .104 + .006
+.05
+2 · .001 + 1 · .055 + 5 · .02 + 5 · .081 + 3 · .076 + 4 · .122 + 2 · .042 + 3 · .001
+.001 + .055 + .02 + .081 + .076 + .122 + .042 + .001
= 3.857

in .05

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

.081

2 2 2

3 3 3

4

5 5

3

4

33

2

11

1



3 · .001 + 2 · .073 + 3 · .133 + 1 · .045 + 3 · .107 + 2 · .104 + 3 · .006
+2 · .001 + 1 · .055 + 5 · .02 + 5 · .081 + 3 · .076 + 4 · .122 + 2 · .042 + 3 · .001
+.001 + .073 + .133 + .045 + .107 + .104 + .006
+.05
+.001 + .055 + .02 + .081 + .076 + .122 + .042 + .001
= 3.857

in .05

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02

.122

.001

.081

2 2 2

3 3 3

4

5 5

3

4

33

2

11

1



Total weighted depth for a given tree (expected lookup cost):

n−1∑
i=0

pidepth(ki )︸ ︷︷ ︸
keys

+
n∑

i=0

qi depth(mi )︸ ︷︷ ︸
misses

Let depthka(ki ) be the depth of the node with ki in the subtree rooted at node with
k1. For example, if kr is the root of the entire tree and ka is a child of the root, then

depthkr (ki ) = depthka(ki ) + 1

Then we can rewrite the total weighted depth as

r−1∑
i=0

pi depthkr (ki ) +
r∑

i=0

qi depthkr (mi )︸ ︷︷ ︸
left subtree total weighted depth (absolute)

+pr+
n−1∑

i=r+1

pi depthkr (ki ) +
n∑

i=r+1

qi depthkr (mi )︸ ︷︷ ︸
right subtree total weighted depth (absolute)



Again, let kr be the root of the entire tree and ka and kb be the root’s children. Then

r−1∑
i=0

pi (depthka(ki ) + 1) +
r∑

i=0

qi (depthka(mi ) + 1)︸ ︷︷ ︸
left subtree total weighted depth (absolute)

+pr+
n−1∑

i=r+1

pi (depthkb(ki ) + 1) +
n∑

i=r+1

qi (depthkr (mi ) + 1)︸ ︷︷ ︸
right subtree total weighted depth (absolute)

Convert to “relative depth”:

n−1∑
i=0

pi +
n∑

i=0

qi︸ ︷︷ ︸
total probability

+
r−1∑
i=0

pi depthka(ki ) +
r∑

i=0

qi depthka(mi )︸ ︷︷ ︸
left subtree total weighted depth (relative)

+
n−1∑

i=r+1

pi depthkb(ki ) +
n∑

i=r+1

qi depthkr (mi )︸ ︷︷ ︸
right subtree total weighted depth (relative)

Let TWD(k) be the total weighted depth of the tree rooted at k (relative to k) and
TP(k) be the total probability of the tree rooted at k. Then

TWD(kr ) = TP(kr ) + TWD(ka) + TWD(kb)



Let P[i ][j ] be the total probabilities of the keys and misses in the range [i , j ]:

P[i ][j ] =

j∑
k=i

pk +

j+1∑
k=i

qk

Let C [i ][j ] be the least total weighted depth of any BST composed from keys in the
range [i , j ]. The recursive characterization is

C [i ][j ] =


2qi + pi + 2qi+1 if i = j

P[i ][j ] + min


qi + C [i + 1][j ]
C [i ][r − 1] + C [r + 1][j ] for r ∈ (i , j)
C [i ][j − 1] + qj+1

 if i < j



C [i ][j ] =


2qi + pi + 2qi+1 if i = j

P[i ][j ] + min


qi + C [i + 1][j ]
C [i ][r − 1] + C [r + 1][j ] for r ∈ (i , j)
C [i ][j − 1] + qj+1

 if i < j

best

subtree for

qi

[i + 1, j ]

ki

best

subtree for

best

subtree for

kr

[r + 1, j ][i , r − 1]

best

subtree for

kj

[i , j − 1]

qj+1

qi + C [i + 1][j ] C [i ][r − 1] + C [r + 1][j ] C [i ][j − 1] + qj+1



C [i ][j ] =


2qi + pi + 2qi+1 if i = j

P[i ][j ] + min


qi + C [i + 1][j ]
C [i ][r − 1] + C [r + 1][j ] for r ∈ (i , j)
C [i ][j − 1] + qj+1

 if i < j

kfka kc kdkbke

C [c][d ]C [a][b]

C [e][f ]



C [i ][j ] =


2qi + pi + 2qi+1 if i = j

P[i ][j ] + min


qi + C [i + 1][j ]
C [i ][r − 1] + C [r + 1][j ] for r ∈ (i , j)
C [i ][j − 1] + qj+1

 if i < j

P[i ][j ] =


qi + pi + qi+1 if i = j

qi + pi + P[i + 1][j ]
or P[i ][r − 1] + pr + P[r + 1][j ] for r ∈ (i , j)
or P[i ][j − 1] + pj + qj+1

 if i < j



0 1 2 3 4 5 6 7
ki a do i in like not then you

pi .073 .045 .104 .05 .055 .103 .076 .042
qi .001 .113 .107 .006 .001 .02 .081 .122 .001

2.916/2

2.125/5

.818/1 .691/6

.301 .485 .33 .064 .097 .305 .482 .288

3.205/2

2.819/5

2.119/2 2.567/5

1.458/61.873/51.783/21.538/2

1.202/2 1.247/21.24/1 1.212/5 1.227/6

1.038/61.018/6.613/5.666/2.975/21.08/1

.747/1 .439/2 .216/4 .438/5 .829/6

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

i j





Coming up:

Do Optimal BST project (Due Mon, Nov 25)

Due Mon, Nov 18 (end of day)
Read Section 6.5
(No quiz on Section 6.5)

Due Wed, Nov 20 (end of day)
Read Sections 7.(1 & 2)
Take quiz (actually due Thurs, Nov 21)

Due Fri, Nov 22 (end of day)
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz


