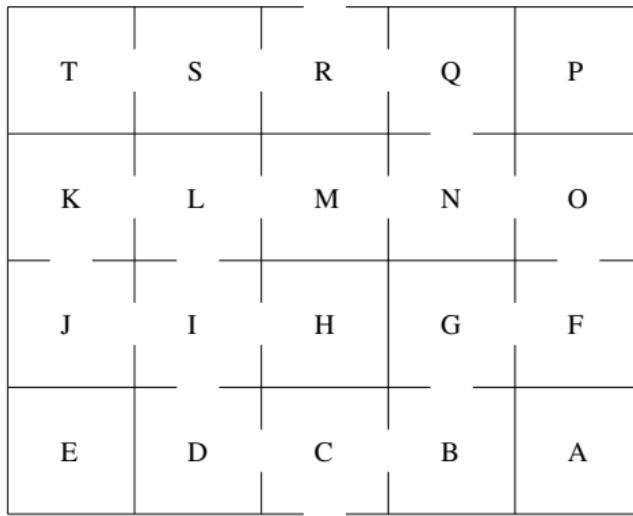


Chapter 3 roadmap:

- ▶ Propositions, booleans, logical equivalence. §3.1 (last week Friday)
- ▶ Boolean sequences §3.2 (Monday)
- ▶ Conditional propositions and arguments. §3.3 (**Today**)
- ▶ Predicates and quantification. §3.(4 & 5) (Friday)
- ▶ (Begin proofs next week)

Today:


- ▶ Define conditional propositions
- ▶ Define arguments
- ▶ Consider known argument forms
- ▶ Practice verifying argument forms (Game 2)

p	q	$p \wedge q$	$p \vee q$	$\sim p$	$\sim p \vee q == p \rightarrow q$
T	T	T	T	F	T
T	F	F	T	F	F
F	T	F	T	T	T
F	F	F	F	T	T

(original)

conditional converse inverse contrapositive negation biconditional

p	q	$p \rightarrow q$	$q \rightarrow p$	$\sim p \rightarrow \sim q$	$\sim q \rightarrow \sim p$	$p \wedge \sim q$	$p \leftrightarrow q$
T	T	T	T	T	T	F	T
T	F	F	T	T	F	T	F
F	T	T	F	F	T	F	F
F	F	T	T	T	T	F	T

1. Bob passed through P .
2. Bob passed through N .
3. Bob passed through M .
4. If Bob passed through O , then Bob passed through F .
5. If Bob passed through K , then Bob passed through L .
6. If Bob passed through L , then Bob passed through K .

Valid argument

If it is Monday, then it is raining
It is Monday.
Therefore it is raining.

$$p \rightarrow q$$

$$p$$

$$\therefore q$$

		premise		premise		conclusion
p	q	$p \rightarrow q$		q		
T	T	T		T		
T	F	F		F		
F	T	T		T		
F	F	T		F		

critical row

Invalid argument

If it is raining, then there are clouds
There are clouds.
Therefore it is raining.

$$p \rightarrow q$$

$$q$$

$$\therefore p$$

		<i>premise</i>	<i>premise</i>	<i>conclusion</i>
<i>p</i>	<i>q</i>	<i>p</i> \rightarrow <i>q</i>	<i>p</i>	
<i>T</i>	<i>T</i>	<i>T</i>	<i>T</i>	$\xleftarrow{\text{critical row}}$
<i>T</i>	<i>F</i>	<i>F</i>	<i>T</i>	
<i>F</i>	<i>T</i>	<i>T</i>	<i>F</i>	$\xleftarrow{\text{critical row}}$
<i>F</i>	<i>F</i>	<i>T</i>	<i>F</i>	

Modus tollens

If it is spring, then the daffodils bloom.
The daffodils aren't blooming.
Therefore it is not spring.

p	q	$p \rightarrow q$	$\sim q$	$\sim p$
T	T	T	F	
T	F	F	T	
F	T	T	F	
F	F	T	T	T

Modus ponens

$$p \rightarrow q$$

$$p$$

$$\therefore q$$

Modus tollens

$$p \rightarrow q$$

$$\sim q$$

$$\therefore \sim p$$

Contradiction

$$p \rightarrow F$$

$$\therefore \sim p$$

Generalization

$$p$$

$$\therefore p \vee q$$

Specialization

$$p \wedge q$$

$$\therefore p$$

Elimination

$$p \vee q$$

$$\sim p$$

$$\therefore q$$

Conjunction

$$p$$

$$q$$

$$\therefore p \wedge q$$

Transitivity

$$p \rightarrow q$$

$$q \rightarrow r$$

$$\therefore p \rightarrow r$$

Division into cases

$$p \vee q$$

$$p \rightarrow r$$

$$q \rightarrow r$$

$$\therefore r$$

Arguments in literature

Elmination:

If anyone knows anything about anything, it's Owl who knows something about something, or my name isn't Winnie-the-Pooh. Which it is. So there you have it.

A. A. Milne, *Winnie-the-Pooh*, Ch 4.

Division into cases:

Soon her eye fell on a little glass box that was lying under the table: she opened it, and found in it a very small cake, on which the words "EAT ME" were beautifully marked in currants. "Well, I'll eat it," said Alice, "and if it makes me grow larger, I can reach the key; and if it makes me grow smaller, I can creep under the door; so either way I'll get into the garden, and I don't care which happens!"

Lewis Carroll, *Alice's Adventures in Wonderland*, Ch 1.

Proof by contradiction

$$\begin{aligned} p \rightarrow F \\ \therefore \sim p \end{aligned}$$

p	$p \rightarrow F$	$\sim p$
T	F	F
F	T	T

$\xleftarrow{\text{critical row}}$

Restore us to yourself, O LORD, that we may be restored. Renew our days as of old—unless you have utterly rejected us, and you remain exceedingly angry with us.

Lam 5:21–22 (ESV)

Mod Pon	Mod Tol	Generalization	Specialization	Elimination	Transitivity	Div into cases	Contradiction
$p \rightarrow q$	$p \rightarrow q$	p	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$			$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$	$\therefore r$

3.3.17

- (a) $t \rightarrow u$
- (b) $p \vee \sim q$
- (c) $p \rightarrow (u \rightarrow r)$
- (d) q
- (e) $\therefore t \rightarrow r$

Mod Pon	Mod Tol	Generalization	Specialization	Elimination	Transitivity	Div into cases	Contradiction
$p \rightarrow q$	$p \rightarrow q$	p	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$			$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$	$\therefore r$

3.3.18

- (a) $p \rightarrow t$
- (b) $\sim (q \rightarrow t) \rightarrow w$
- (c) $p \vee q$
- (d) $\sim w$
- (e) $\therefore t$

Mod Pon	Mod Tol	Generalization	Specialization	Elimination	Transitivity	Div into cases	Contradiction
$p \rightarrow q$	$p \rightarrow q$	p	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$			$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$	$\therefore r$

3.3.24

- (a) w
- (b) $q \rightarrow r$
- (c) $t \rightarrow s$
- (d) $u \rightarrow s$
- (e) $(\sim t \wedge \sim u) \rightarrow \sim w$
- (f) $(s \vee y) \rightarrow (p \rightarrow q)$
- (g) $\sim (p \rightarrow r) \vee x$
- (h) $\therefore x$

Mod Pon	Mod Tol	Generalization	Specialization	Elimination	Transitivity	Div into cases	Contradiction
$p \rightarrow q$	$p \rightarrow q$	p	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$			$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$	$\therefore r$

3.3.27

- (a) $p \rightarrow q$
- (b) x
- (c) $\sim (p \vee w) \rightarrow r$
- (d) $q \rightarrow u$
- (e) $x \rightarrow t$
- (f) $w \rightarrow u$
- (g) $r \vee s$
- (h) $r \rightarrow F$
- (i) $\therefore t \wedge s \wedge u$

Mod Pon	Mod Tol	Generalization	Specialization	Elimination	Transitivity	Div into cases	Contradiction
$p \rightarrow q$	$p \rightarrow q$	p	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \vee q$	$p \rightarrow F$
p	$\sim q$	$\therefore p \vee q$	$\therefore p$	$\sim p$	$q \rightarrow r$	$p \rightarrow r$	$\therefore \sim p$
$\therefore q$	$\therefore \sim p$			$\therefore q$	$\therefore p \rightarrow r$	$q \rightarrow r$	$\therefore r$

3.3.25

- (a) $u \rightarrow \sim p$
- (b) $(\sim p \vee q) \rightarrow (r \rightarrow s)$
- (c) $u \wedge \sim w$
- (d) $t \rightarrow s$
- (e) $(\sim t \wedge \sim r) \rightarrow w$
- (f) $\therefore s$

For next time:

Do Exercises 3.5.(7-10) and 3.5.(3, 9-13)

Read Section 3.(6 & 7).

Take quiz