

Chapter 5 roadmap:

- ▶ Introduction to relations (last week Friday)
- ▶ Properties of relations (Monday and Wednesday)
- ▶ Closures (**Today**)
- ▶ Partial and total order relations (next week Monday)

Today:

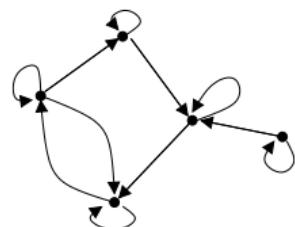
- ▶ Review of relation properties
- ▶ An arithmetic on relations
- ▶ Computing whether a function is transitive
- ▶ Transitive closure
- ▶ Other closures

A relation from one set to another	R	set of pairs	subset of $X \times Y$ $R \subseteq X \times Y$	isEnrolledIn, isTaughtBy
A relation on a set	R	set of pairs	subset of $X \times X$ $R \subseteq X \times X$	eats, divides
The image of an element under a relation	$\mathcal{I}_R(a)$	set	set of things that a is related to $\mathcal{I}_R(a) = \{b \in Y \mid (a, b) \in R\}$	classes Bob is enrolled in, numbers that 4 divides
The image of a set under a relation	$\mathcal{I}_R(A)$	set	set of things that things in A are related to $\mathcal{I}_R(A) = \{b \in Y \mid \exists a \in A \mid (a, b) \in R\}$	classes Bob, Larry, or Alice are taking, numbers that 2, 3, or 5 divide
The inverse of a relation	R^{-1}	relation	the arrows/pairs of R reversed $R^{-1} = \{(b, a) \in Y \times X \mid (a, b) \in R\}$	hasOnRoster, teaches, isEatenBy, isDivisibleBy
The composition of two relations	$S \circ R$	relation	two hops combined to one hop (Assume $S \subseteq Y \times Z$) $S \circ R = \{(a, c) \in X \times Z \mid \exists b \in Y \mid (a, b) \in R \wedge (b, c) \in S\}$	hasAsProfessor, eatsSomethingThatEats
The identity relation on a set	i_X	relation	everything is related only to itself $i_X = \{(x, x) \mid x \in X\}$	=

Reflexivity

Informal Everything is related to itself

Formal $\forall x \in X, (x, x) \in R$



Visual

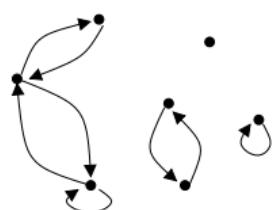
Symmetry

All pairs are mutual

$\forall x, y \in X, (x, y) \in R \rightarrow (y, x) \in R$

OR

$\forall (x, y) \in R, (y, x) \in R$



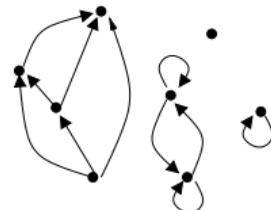
Transitivity

Anything reachable by two hops is reachable by one hop

$\forall x, y, z \in X, (x, y) \in R, (y, z) \in R \rightarrow (x, z) \in R$

OR

$\forall (x, y), (y, z) \in R, (x, z) \in R$



Examples $\subseteq, \leq, \geq, \equiv, i$, isAquaintedWith, waterVerticallyAligned

\equiv , isOppositeOf, isOnSameRiver, isAquaintedWith

$<, \leq, >, \geq, \subseteq$, isTallerThan, isAncestorOf, isWestOf

The identity relation is a _____.

noun

Reflexivity is a _____ that _____.

noun

phrase

Composition is an _____ on _____.

noun

plural noun

Transitivity is a _____ that _____.

noun

phrase

Operators	$x + y$ $-x$	$p \vee q$ $\sim p$	$A \cup B$ \overline{A}
Distribution	$x \cdot (y + z)$ $= x \cdot y + x \cdot z$	$p \wedge (q \vee r)$ $\equiv (p \wedge q) \vee (p \wedge r)$	$A \cap (B \cup C)$ $= (A \cap B) \cup (A \cap C)$
Identity	$x + 0 = x$ $x \cdot 1 = x$	$p \wedge T \equiv p$ $p \vee F \equiv p$	$A \cup \emptyset = A$ $A \cap U = A$

$$S\circ R$$

$$R^{-1}$$

$$i_X\circ R=R$$

$$R^2=R\circ R$$

R	is one less than	eats	is parent of
R^2	is two less than	eats something that eats	is grandparent of
R^3	is three less than	eats something that eats something that eats	is great grandparent of
???	<	gets nutrients from	is ancestor of

Domain	First relation	Second relation
Rivers	<i>flows into</i> The Platte flows into the Missouri, and the Missouri flows into the Mississippi.	<i>is tributary to</i> The Platte is a tributary to the Missouri; both the Platte and the Missouri are tributaries to the Mississippi.
People	<i>is parent of</i> Bill is Jane's parent; Jane is Leroy's parent	<i>is ancestor of</i> Bill is Jane's ancestor; Leroy has both Jane and Bill as ancestors.

Domain
Animals

First relation

eats

Rabbit eats clover; coyote eats rabbit.

Second relation

derives nutrients from

Coyote derives nutrients from rabbit; rabbit derives nutrients from clover; both coyote and rabbit ultimately derive nutrients from clover.

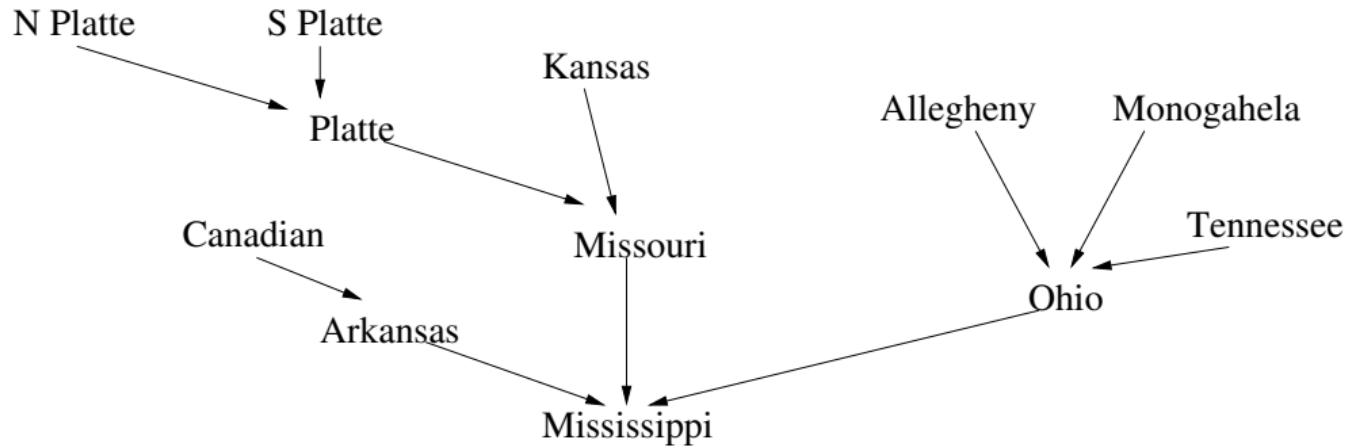
\mathbb{Z}

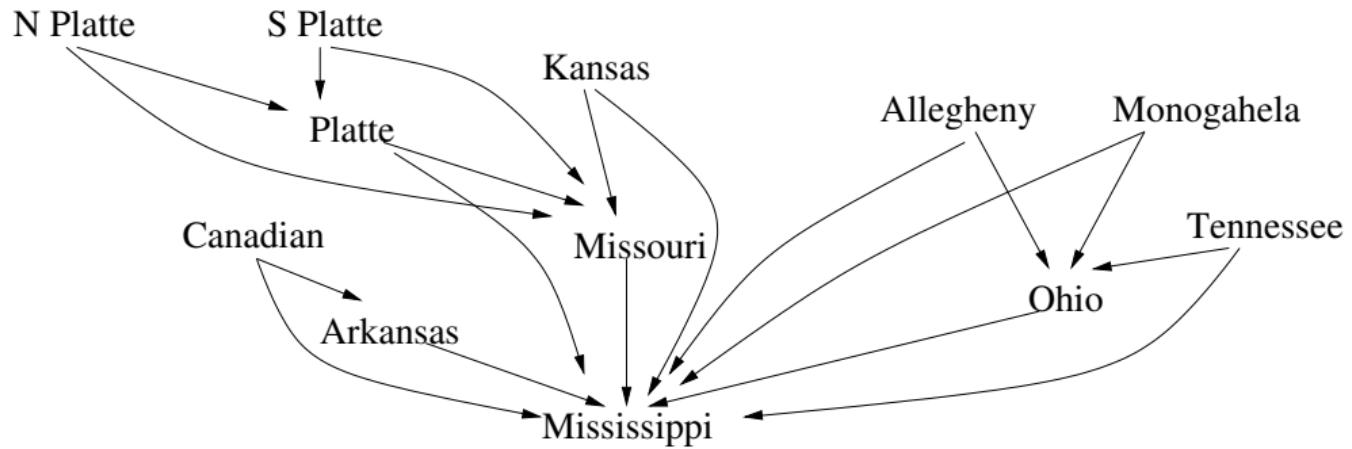
is one less than

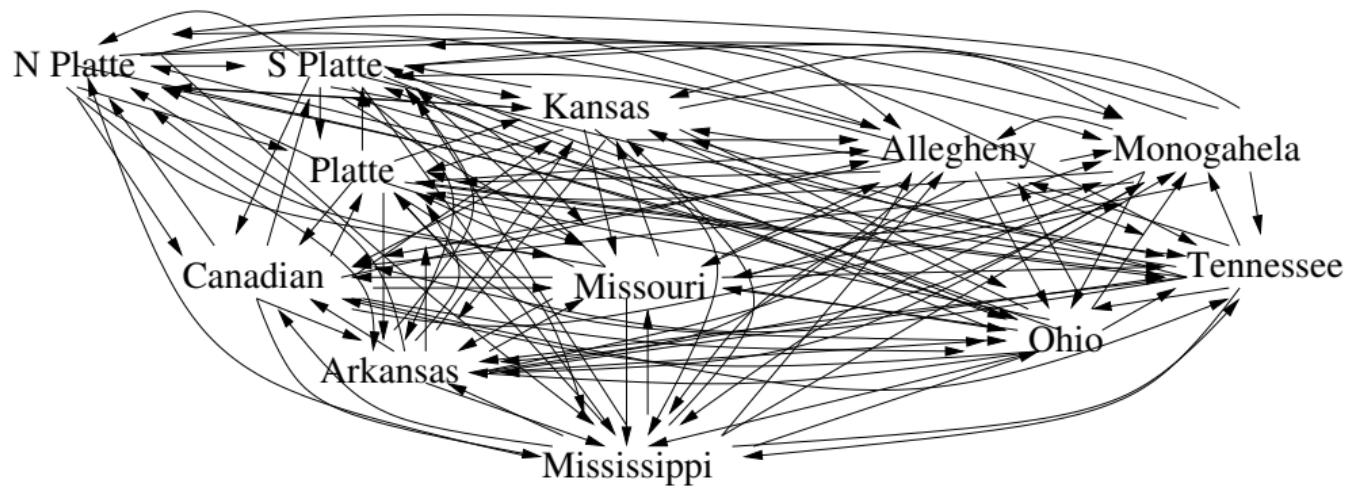
2 is one less than 3; 3 is one less than 4

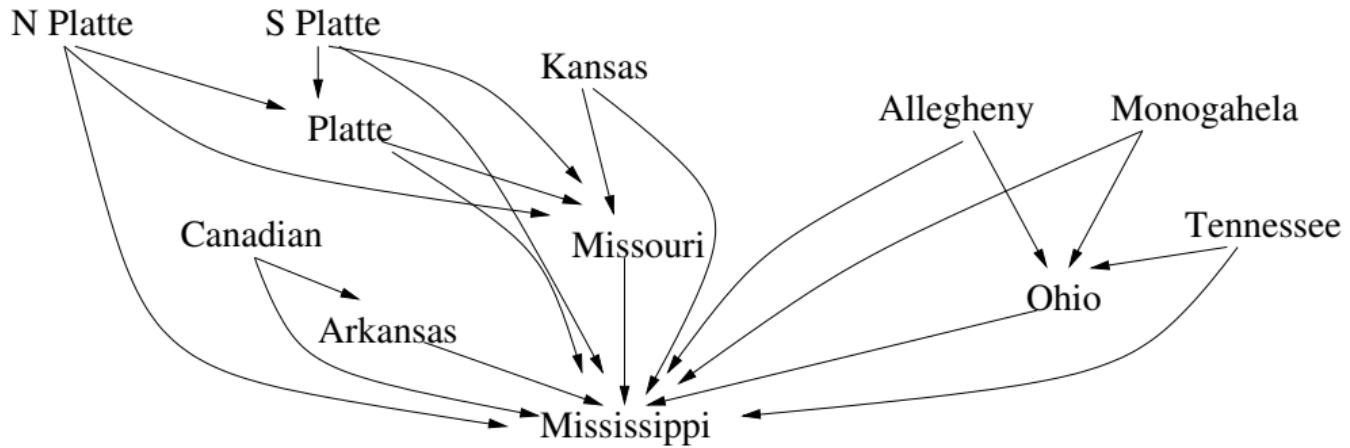
$<$

$2 < 3; 3 < 4; 2 < 4.$









If R is a relation on X , then R^T is the **transitive closure** of R if

- ▶ R^T is transitive
- ▶ $R \subseteq R^T$
- ▶ If S is a transitive relation such that $R \subseteq S$, then $R^T \subseteq S$

Which of the following expresses a transitive closure?

- ▶ My friends are my friends, and no one else.
- ▶ Any friend of my friend is also my friend.
- ▶ Any friend of my friends' friends is also my friend.
- ▶ My friends are my friends, and so are my friends's friends, and so are my friends' friends' friends, and so on forever.

Let R be a relation and let T be the transitive closure of R . What, then, do you know to be true? Select all that apply.

- ▶ R is transitive
- ▶ T is a proposition
- ▶ T is a relation
- ▶ T is transitive
- ▶ T is a powerset
- ▶ $R \subseteq T$
- ▶ $T \subseteq R$

Theorem 5.13 *If R is a relation on a set A , then*

$$R^\infty = \bigcup_{i=1}^{\infty} R^i = \{(x, y) \mid \exists i \in \mathbb{N} \text{ such that } (x, y) \in R^i\}$$

is the transitive closure of R .

Proof. *Suppose R is a relation on a set A .*

Suppose $a, b, c \in A$, $(a, b), (b, c) \in R^\infty$. By the definition of R^∞ , there exist $i, j \in \mathbb{N}$ such that $(a, b) \in R^i$ and $(b, c) \in R^j$. By the definition of relation composition and Exercise 5.7.4, $(a, c) \in R^j \circ R^i = R^{i+j}$. $R^{i+j} \subseteq R^\infty$ by the definition of R^∞ . By the definition of subset, $(a, c) \in R^\infty$. Hence, R^∞ is transitive by definition.

Suppose $a, b \in A$ and $(a, b) \in R$. By the definition of R^∞ (taking $i = 1$), $(a, b) \in R^\infty$, and so $R \subseteq R^\infty$, by definition of subset.

Suppose S is a transitive relation on A and $R \subseteq S$. Further suppose $(a, b) \in R^\infty$. Then, by definition of R^∞ , there exists $i \in \mathbb{N}$ such that $(a, b) \in R^i$. By Lemma 5.14, $(a, b) \in S$. Hence $R^\infty \subseteq S$ by definition of subset.

Therefore, R^∞ is the transitive closure of R . \square

Other closures:

Ex 5.4.9 $R \cup i_A$ is the reflexive closure of R

Ex 5.4.10 $R \cup R^{-1}$ is the symmetric closure of R . (HW)

Ex 5.4.9 $R \cup i_A$ is the reflexive closure of R

Proof. Suppose R is a relation on A .

[$R \cup i_A$ is reflexive:] Suppose $a \in A$. $(a, a) \in i_A$ by definition of identity relation. $(a, a) \in R \cup i_A$ by definition of union. Hence $R \cup i_A$ is reflexive by definition.

[$R \subseteq R \cup i_A$:] Suppose $(a, b) \in R$. Then $(a, b) \in R \cup i_A$ by definition of union. Hence $R \subseteq R \cup i_A$. (Alternately, we could have cited Exercise 4.2.1.)

[$R \cup i_A$ is the smallest such relation:] Suppose S is a reflexive relation such that $R \subseteq S$. Suppose further $(a, b) \in R \cup i_A$. By definition of union, $(a, b) \in R$ or $(a, b) \in i_A$.

Case 1: Suppose $(a, b) \in R$. Then $(a, b) \in S$ by definition of subset (since we supposed $R \subseteq S$).

Case 2: Suppose $(a, b) \in i_A$. Then, by definition of identity relation, $a = b$. $(a, a) \in S$ by definition of reflexive (since we suppose S is reflexive). $(a, b) \in S$ by substitution.

Either way, $(a, b) \in S$ and hence $R \cup i_A \subseteq S$ by definition of subset.

Therefore, $R \cup i_A$ is the reflexive closure of R . \square

For next time:

Do Exercises 5.4.(1, 2, 3, 4, 5, 9, 10)

Read 5.5

Take quiz