

Chapter 4 roadmap:

- ▶ Subset proofs (Monday)
- ▶ Set equality and emptiness proofs (Wednesday)
- ▶ Conditional and biconditional proofs (**Today**)
- ▶ Proofs about powersets (next week Monday)
- ▶ Review for Test 2 (next week Wednesday)
- ▶ Test 2, on Chapters 3 & 4 (next week Friday, Oct 17)

Today:

- ▶ Proofs of conditional propositions
- ▶ Proofs about numbers
- ▶ Proofs of biconditional propositions

General forms:

1. Facts (p) Set forms

1. Subset $X \subseteq Y$
2. Set equality $X = Y$
3. Set emptiness $X = \emptyset$

2. Conditionals ($p \rightarrow q$) 3. Biconditionals ($p \leftrightarrow q$)

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

To prove $p \rightarrow q$

Suppose p

...

q

$p \rightarrow q$

An integer x is *even* if $\exists k \in \mathbb{Z} \mid x = 2k$.

An integer x is *odd* if $\exists k \in \mathbb{Z} \mid x = 2k + 1$.

“Axiom 3.” If $x, y \in \mathbb{Z}$, then $x + y \in \mathbb{Z}$. (*Closure of addition*)

“Axiom 4.” If $x, y \in \mathbb{Z}$, then $x \cdot y \in \mathbb{Z}$. (*Closure of multiplication*)

“Axiom 5.” If $x \in \mathbb{Z}$, then x is even iff x is not odd.

$\forall x, y \in \mathbb{Z}, x \mid y$ (read, “ x divides y ”) if $\exists k \in \mathbb{Z} \mid x \cdot k = y$.

Note that $y/x = k$ or $\frac{y}{x} = k$ or $x \mid \frac{y}{k}$.

For next time:

Pg 162: 4.4.(1, 4, 5)

Pg 164: 4.5.(2 & 5)

Review 1.8, especially Ex 1.8.14

Skim 4.7

Take quiz