

Chapter 7 outline:

- ▶ Recursively-defined sets (last week Monday)
- ▶ Trees (Monday)
- ▶ Structural induction (Wednesday)
- ▶ Mathematical induction (**Today**)
- ▶ Loops (next week Monday)
- ▶ Loop invariants (next week Wednesday)
- ▶ Review for final exam (next week Friday)
- ▶ Final exam (Tues, Dec 16, 1:30pm)

Last time we saw self-referential proofs for propositions quantified over recursively defined sets, **structural induction**.

Today we see self-referential proofs for propositions quantified over the natural numbers and whole numbers.

- ▶ Opening examples and observations
- ▶ General form of **mathematical induction**
- ▶ Comments on the term *induction*
- ▶ Other examples, including on sets

•

• •
• •

• • •
• • •
• • •

• • • •
• • • •
• • • •

•

• ○

○ ○

•

• •

• •

• • ○

• • ○

○ ○ ○

•

• •

• •

• • •

• • •

• • •

• • • ○

• • • ○

• • • ○

○ ○ ○ ○

Conjecture:

$$\forall n \in \mathbb{N}, \sum_{i=1}^n (2i - 1) = n^2$$

$$\sum_{i=1}^5 (2i - 1) = (2 \cdot 1 - 1) + (2 \cdot 2 - 1) + (2 \cdot 3 - 1) + (2 \cdot 4 - 1) + (2 \cdot 5 - 1) = 1 + 3 + 5 + 7 + 9$$

Recall the Peano definition of \mathbb{W} . Similarly for \mathbb{N} : $n \in \mathbb{N}$ if $n = 1$ or $n = x + 1$ for some $x \in \mathbb{N}$.

$$\forall n \in \mathbb{N}, \sum_{i=1}^n (2i - 1) = n^2$$

$$\forall n \in \mathbb{N}, \sum_{i=1}^n (2i - 1) = n^2$$

Proof. Suppose $n \in \mathbb{N}$. Then either $n = 1$ or there exists $n \in \mathbb{N}$ such that $n = x + 1$.

Base case. Suppose $n = 1$. Then

$$\sum_{i=1}^n (2i - 1) = 2 - 1 = 1 = 1^2$$

Inductive case. Suppose $n = x + 1$ such that $x \in \mathbb{N}$ and $\sum_{i=1}^x (2i - 1) = x^2$. Then

$$\begin{aligned} \sum_{i=1}^n (2i - 1) &= 2n - 1 + \sum_{i=1}^{n-1} (2i - 1) && \text{by definition of summation} \\ &= 2n - 1 + \sum_{i=1}^x (2i - 1) && \text{by substitution} \\ &= 2n - 1 + x^2 && \text{by the inductive hypothesis} \\ &= 2n - 1 + (n - 1)^2 && \text{by substitution} \\ &= 2n - 1 + n^2 - 2n + 1 && \text{by algebra (FOIL)} \\ &= n^2 && \text{by algebra (cancellation)} \quad \square \end{aligned}$$

$$4|0 \qquad \qquad 0 + 1 = 1 = 5^0$$

$$4|4 \qquad \qquad 4 + 1 = 5 = 5^1$$

$$4|24 \qquad \qquad 24 + 1 = 25 = 5^2$$

$$4|124 \qquad \qquad 124 + 1 = 125 = 5^3$$

$$4|624 \qquad \qquad 624 + 1 = 625 = 5^4$$

Conjecture: $\forall n \in \mathbb{W}, 4|5^n - 1$

$\forall n \in \mathbb{W}, 4|5^n - 1$

$$\forall n \in \mathbb{W}, 4|5^n - 1$$

Proof. By induction on n .

Base case. Suppose $n = 0$. Then $5^0 - 1 = 1 - 1 = 0 = 4 \cdot 0$. Hence $4|5^0 - 1$ by the definition of divides.

Inductive case. Suppose $n > 0$ and $4|5^{n-1} - 1$.

Then, by definition of divides, there exists $k \in \mathbb{W}$ such that $5^{n-1} - 1 = 4k$.

Moreover,

$$\begin{aligned} 5^n - 1 &= 5 \cdot 5^{n-1} - 1 && \text{by algebra, unless otherwise noted...} \\ &= 5 \cdot (5^{n-1} - 1 + 1) - 1 \\ &= 5(4k + 1) - 1 && \text{by the inductive hypothesis} \\ &= 5 \cdot 4 \cdot k + 5 - 1 \\ &= 5 \cdot 4 \cdot k + 4 \\ &= 4(5k + 1) \end{aligned}$$

Hence $4|5^n - 1$ by definition of divides. \square

$$\forall n \in \mathbb{W}, 4|5^n - 1$$

Proof. By induction on n .

Base case. Suppose $n = 0$. Then $5^0 - 1 = 1 - 1 = 0 = 4 \cdot 0$. Hence $4|5^0 - 1$ by the definition of divides.

Inductive case. Suppose $4|5^n - 1$ for some $n \geq 0$.

Then, by definition of divides, there exists $k \in \mathbb{W}$ such that $5^n - 1 = 4k$.

Moreover,

$$\begin{aligned} 5^{n+1} - 1 &= 5 \cdot 5^n - 1 && \text{by algebra, unless otherwise noted...} \\ &= 5 \cdot (5^n - 1 + 1) - 1 \\ &= 5(4k + 1) - 1 && \text{by the inductive hypothesis} \\ &= 5 \cdot 4 \cdot k + 5 - 1 \\ &= 5 \cdot 4 \cdot k + 4 \\ &= 4(5k + 1) \end{aligned}$$

Hence $4|5^{n+1} - 1$ by definition of divides. \square

To prove $\forall n \in \mathbb{W}, I(n)$,

- ▶ Show $I(0)$
- ▶ Show $\forall n \in \mathbb{W}, I(n) \rightarrow I(n + 1)$, that is

Suppose $n \geq 0$ such that $I(n)$

⋮

$I(n + 1)$

Alternately, show $\forall n \in \mathbb{W}$ such that $n > 0, I(n - 1) \rightarrow I(n)$, that is

Suppose $n \geq 0$ such that $I(n - 1)$

⋮

$I(n)$

- ▶ Conclude $\forall n \in \mathbb{W}, I(n)$

The *principle of mathematical induction* is

$$[I(0) \wedge \forall n \in \mathbb{W}, I(n) \rightarrow I(n + 1)] \rightarrow [\forall n \in \mathbb{W}, I(n)]$$

$$\sum_{i=1}^1 i = 1 = 1 = \frac{1 \cdot 2}{2}$$

$$\sum_{i=1}^2 i = 1 + 2 = 3 = \frac{2 \cdot 3}{2}$$

$$\sum_{i=1}^3 i = 1 + 2 + 3 = 6 = \frac{3 \cdot 4}{2}$$

$$\sum_{i=1}^4 i = 1 + 2 + 3 + 4 = 10 = \frac{4 \cdot 5}{2}$$

$$\sum_{i=1}^5 i = 1 + 2 + 3 + 4 + 5 = 15 = \frac{5 \cdot 6}{2}$$

Ex 7.5.1. $\forall n \in \mathbb{N}, \sum_{i=1}^n i = \frac{n(n+1)}{2}.$

Ex 7.5.1. $\forall n \in \mathbb{N}, \sum_{i=1}^n i = \frac{n(n+1)}{2}.$

Proof. By induction on n .

Base case. Suppose $n = 1$. Then $\sum_{i=1}^1 i = 1 = \frac{1(1+1)}{2}.$

Inductive case. Suppose that for some $n \geq 1$, $\sum_{i=1}^n i = \frac{n(n+1)}{2}$. Then

$$\sum_{i=1}^{n+1} i = n + 1 + \sum_{i=1}^n i \quad \text{by definition of summation}$$

$$= n + 1 + \frac{n(n+1)}{2} \quad \text{by the inductive hypothesis}$$

$$= \frac{2n+2+n^2+n}{2} \quad \text{by algebra}$$

$$= \frac{n^2+3n+2}{2} \quad "$$

$$= \frac{(n+1)(n+2)}{2} \quad "$$

□

Observe:

$$|A|$$

$$|\mathcal{P}(A)|$$

$$|\emptyset| = 0$$

$$|\{\emptyset\}| = 1$$

$$|\{a\}| = 1$$

$$|\{\emptyset, \{a\}\}| = 2$$

$$|\{a, b\}| = 2$$

$$|\{\emptyset, \{a\}, \{b\}, \{a, b\}\}| = 4$$

$$|\{a, b, c\}| = 3$$

$$|\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}| = 8$$

Conjecture: For any finite set A , $|\mathcal{P}(A)| = 2^{|A|}$.

Theorem 7.5. For all $n \in \mathbb{W}$, if A is a set such that $|A| = n$, then $|\mathcal{P}(A)| = 2^n$.

Theorem 7.5. For all $n \in \mathbb{W}$, if A is a set such that $|A| = n$, then $|\mathcal{P}(A)| = 2^n$.

Proof. By induction on n .

Base case. Suppose $n = 0$. Then $A = \emptyset$, and $|\mathcal{P}(A)| = |\{\emptyset\}| = 1 = 2^0$.

Inductive case. Suppose for some $n \geq 0$, if A is a set such that $|A| = n$, then $|\mathcal{P}(A)| = 2^n$. Suppose further than A is a set such that $|A| = n + 1$.

Since $|A| > 0$, let $a \in A$. By Corollary 4.12, $\mathcal{P}(A - \{a\})$ and $\{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\}$ make a partition of $\mathcal{P}(A)$. Then

$$\begin{aligned} |\mathcal{P}(A - \{a\})| &= |\{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\}| && \text{by Exercise 6.6.6} \\ |A - \{a\}| &= |A| - |\{a\}| && \text{since } \{a\} \subseteq A, \text{ and by Ex 6.6.1} \\ &= n + 1 - 1 && \text{by supposition} \\ &= n && \text{by arithmetic} \\ |\mathcal{P}(A - \{a\})| &= 2^n && \text{by the inductive hypothesis} \\ |\mathcal{P}(A)| &= |\mathcal{P}(A - \{a\})| \\ &\quad + |\{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\}| && \text{by Theorem 6.12} \\ &= 2^n + 2^n && \text{by substitution} \\ &= 2^{n+1} && \text{by algebra. } \square \end{aligned}$$

Iterated union (similar for intersection):

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \dots \cup A_n$$

Ex 7.5.6. $\forall n \in \mathbb{N}, \overline{\bigcup_{i=1}^n A_i} = \bigcap_{i=1}^n \overline{A_i}$

Proof. By induction on n .

Base case. Suppose $n = 1$. Then

$$\overline{\bigcup_{i=1}^1 A_i} = \overline{A_1} = \bigcap_{i=1}^1 \overline{A_1}$$

Inductive case. Suppose $\overline{\bigcup_{i=1}^n A_i} = \bigcap_{i=1}^n \overline{A_i}$ for some $n \geq 1$. Then

$$\overline{\bigcup_{i=1}^{n+1} A_i} = \overline{A_{n+1} \cup \bigcup_{i=1}^n A_i} \quad \text{by definition of iterated union}$$

$$= \overline{A_{n+1}} \cap \overline{\bigcup_{i=1}^n A_i} \quad \text{by Ex 4.2.13 (DeMorgan's law of sets)}$$

$$= \overline{A_{n+1}} \cap \bigcap_{i=1}^n \overline{A_i} \quad \text{by the inductive hypothesis}$$

$$= \bigcap_{i=1}^{n+1} \overline{A_i} \quad \text{by the definition of iterated intersection}$$

□

For next time:

Do Exercises 7.5.(2, 4, 7, 8)

Read 7.(6 & 7)