

Chapter 4 roadmap:

- ▶ Subset proofs (last week Monday)
- ▶ Set equality and emptiness proofs (last week Wednesday)
- ▶ Conditional and biconditional proofs (last week Friday)
- ▶ Proofs about powersets (**Today**)
- ▶ Review for Test 2 (Wednesday)
- ▶ Test 2 (Friday)

Today: Case study of large proof (powersets)

- ▶ Review of powersets and their recursive structure
- ▶ Big result
- ▶ Warm-up proofs
- ▶ Proving the big result

Which are true?

$$\mathcal{P}(\emptyset) = \emptyset$$

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

$$\mathcal{P}(\emptyset) = \{\{\emptyset\}\}$$

$$\mathcal{P}(\emptyset) = \{\emptyset, \{\emptyset\}\}$$

$$\mathcal{P}(\{1\}) = \{1\}$$

$$\mathcal{P}(\{1\}) = \{\{1\}\}$$

$$\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}$$

$$A \in \mathcal{P}(A)$$

$$A \subseteq \mathcal{P}(A)$$

$$A = \{a, b, c\} \quad \mathcal{P}(A) = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{a\}, \{b, c\}, \{b\}, \{c\}, \emptyset\}$$

$$A - \{a\} = \{b, c\} \quad \mathcal{P}(A - \{a\}) = \{\{b, c\}, \{b\}, \{c\}, \emptyset\}$$

$$\{\{a\} \cup C \mid C \in \mathcal{P}(A - \{a\})\} = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{a\}\}$$

$$\mathcal{P}(A) = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{a\}, \{b, c\}, \{b\}, \{c\}, \emptyset\} = \{\{a\} \cup C \mid C \in \mathcal{P}(A - \{a\})\} \cup \mathcal{P}(A - \{a\})$$

$$A = \{a, b, c\} \quad \mathcal{P}(A - \{a\}) = \{\{b, c\}, \{b\}, \{c\}, \emptyset\}$$

$$\{\{a\} \cup C \mid C \in \mathcal{P}(A - \{a\})\} = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{a\}\}$$

If $a \in A$, then $\mathcal{P}(A)$ consists in $\mathcal{P}(A - \{a\})$ and $\{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\}$

Corollary 4.12. If $a \in A$, then $\mathcal{P}(A - \{a\})$ and $\{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\}$ make a partition of $\mathcal{P}(A)$.

$A \subseteq B$ iff $A \in \mathcal{P}(B)$

$A \in \mathcal{P}(A)$

$\emptyset \in \mathcal{P}(A)$

$a \in A$ iff $\{a\} \in \mathcal{P}(A)$

Warm-up proofs:

Theorem 4.7. If $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then $A \subseteq B$.

Exercise 4.7.1. If $B \subseteq A$, then $\mathcal{P}(B) - \mathcal{P}(A) = \emptyset$.

Roadmap

Corollary 4.12

$\mathcal{P}(A - \{a\})$ and $\{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\}$
make a partition of $\mathcal{P}(A)$.

Theorem 4.11 / Exercise 4.7.6

$\mathcal{P}(A - \{a\}) \cap$
 $\{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\} = \emptyset$

Theorem 4.10.

$\mathcal{P}(A - \{a\}) \cup \{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\} = \mathcal{P}(A)$

Lemma 4.9.

$\mathcal{P}(A - \{a\}) \cup \{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\} \subseteq \mathcal{P}(A)$

Lemma 4.8.

$\mathcal{P}(A) \subseteq$
 $\mathcal{P}(A - \{a\}) \cup \{C \cup \{a\} \mid C \in \mathcal{P}(A - \{a\})\}$

Useful previous results:

Ex 4.4.6. $D \subseteq E$ iff $(E - D) \cup D = E$

Ex 4.4.4 If $D \subseteq E$, then $D - F \subseteq E - F$.

For next time:

Pg 174: 4.7.(1, 3, 4, 6)

Take quiz