

Chapter 3 roadmap:

- ▶ Propositions, booleans, logical equivalence. §3.1 (last week Friday)
- ▶ Boolean sequences §3.2 (Monday)
- ▶ Conditional propositions and arguments. §3.3 (Wednesday)
- ▶ Predicates and quantification. §3.(4 & 5) (**Today**)
- ▶ (Begin proofs next week)

Today:

- ▶ Predicates
 - ▶ Definition
 - ▶ Predicates in code
 - ▶ Anonymous functions
- ▶ Quantification
 - ▶ Universal quantification
 - ▶ Existential quantification
 - ▶ Quantification in code
 - ▶ Nested quantification

Four ways to interpret/define the idea of a *predicate*

- ▶ A predicate is a proposition with a parameter.

$$x < 5 \quad x \text{ is orange}$$

- ▶ A predicate is a function whose value is true or false.

$$P(x) = x < 5 \quad Q(x) = x \text{ is orange}$$

- ▶ A predicate is a part of a sentence that complements a noun phrase to make a proposition.

A pumpkin **is orange**.

- ▶ A predicate is a truth set

$$P : \mathbb{N} \rightarrow \mathbb{B}, P(x) = x < 5 \quad Q(x) = x \text{ is orange}$$

Truth set: $\{1, 2, 3, 4\}$

$\{ \text{pumpkin, fall leaves, orange juice, } \dots \}$

Universal quantification

“For all multiples of 3, the sum of their digits is a multiple of 3.”

Let D be the set of multiples of 3, that is

$$D = \{n \in \mathbb{N} \mid n \bmod 3 = 0\} = \{3, 6, 9, 12, 15, 18, \dots\}$$

$$\forall x \in D, \text{sum}(\text{digify}(x)) \in D$$

Other examples:

- ▶ $\forall x \in \{5, 7, 19, 23, 43\}$, x is prime.
- ▶ $\forall x \in \{4, 16, 25, 31\}$, x is a perfect square.

Existential quantification

“There is a multiple of 3 that is not a perfect square.”

$$\exists x \in D \mid x \text{ is not a perfect square}$$

Alternately, “Some multiples of 3 are not perfect squares.”

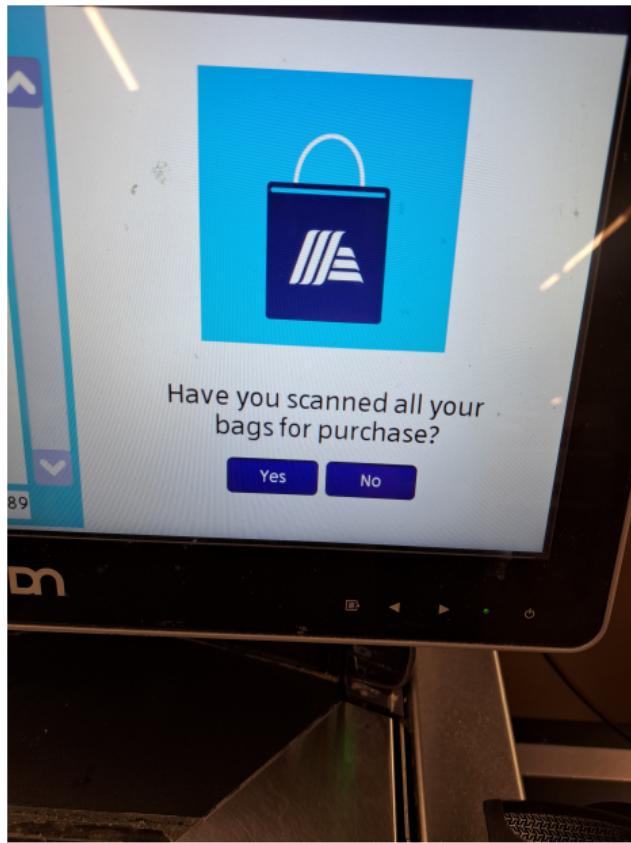
General forms for universal and existential quantification:

$$\forall x \in X, P(x)$$

$$\exists x \in X \mid P(x)$$

$\forall x \in \emptyset, P(x)$ is **always (vacuously) true**.

$\exists x \in \emptyset \mid P(x)$ is **always false**

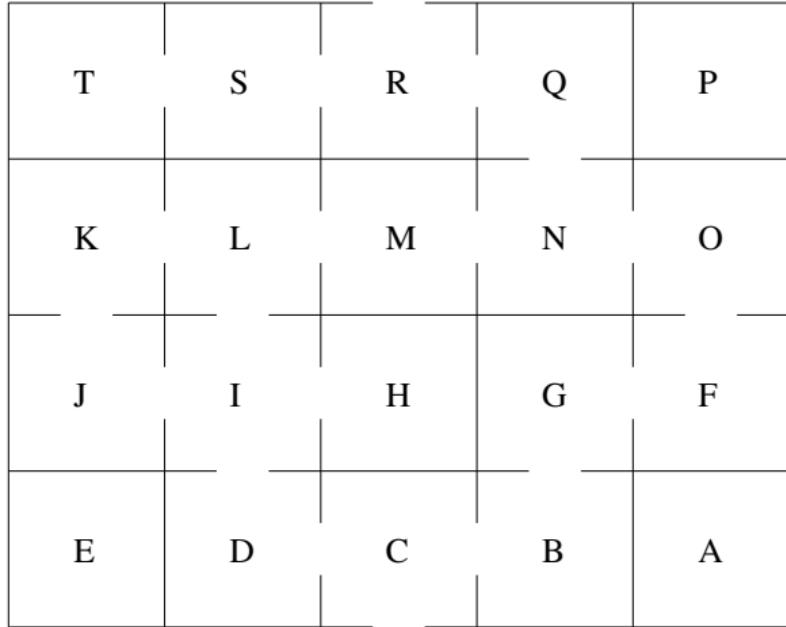


$$\sim (\forall x \in X, P(x))$$

$$\equiv \sim (P(x_1) \wedge P(x_2) \wedge \dots)$$

$$\equiv \sim P(x_1) \vee \sim P(x_2) \vee \dots \quad \text{By DeMorgan's Law}$$

$$\equiv \exists x \in X \mid \sim P(x)$$

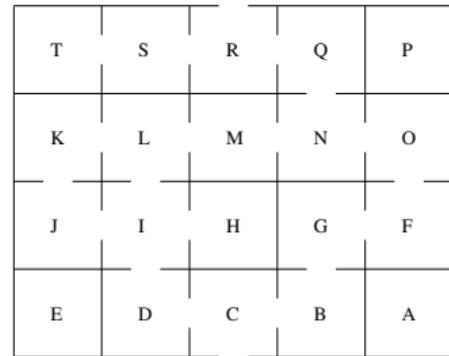


1. Bob passed through *P*.
2. Bob passed through *N*.
3. Bob passed through *M*.
4. If Bob passed through *O*, then Bob passed through *F*.
5. If Bob passed through *K*, then Bob passed through *L*.
6. If Bob passed through *L*, then Bob passed through *K*.

Let X be the routes through the maze, that is,
 $X = \{CBGFONQR, CDILMNQR, CDIJKLMNQR\}$

Let $P(x) = \text{route } x \text{ contains } L$,
 $Q(x) = \text{route } x \text{ contains } K$.

Consider $\forall x \in X, P(x) \rightarrow Q(x)$.



X	$P(x)$	$Q(x)$	$P(x) \rightarrow Q(x)$
$CBGFONQR$			
$CDILMNQR$			
$CDIJKLMNQR$			

For next time:

*Do Exercises 3.4.(2, 5-9) and 3.5.(22-26).
(All programming)*

Read Section 4.1

Take quiz