

Chapter 3:

- ▶ Propositions, booleans, logical equivalence. §3.1 (**Today**)
- ▶ Boolean sequences §3.2 (next week Monday)
- ▶ Conditional propositions and arguments. §3.3 (next week Wednesday)
- ▶ Predicates and quantification. §3.(4 & 5) (next week Friday)
- ▶ (Begin proofs next week after)

Today:

- ▶ Highlight points from the beginning of §3.1: Propositions, forms, etc
- ▶ Take a programming break
- ▶ Work through the latter part of §3.1: Logical equivalences (Game 1)

A **proposition** is a sentence that is true or false, but not both.

It is snowing and it is not Thursday.

A **propositional form** is like a proposition but with content replaced by variables.

p and not q

$p \wedge \sim q$

$$\mathbb{Z} = \{\dots -3, -2, -1, 0, 1, 2, 3 \dots\}$$

$$\mathbb{B} = \{T, F\}$$

$+$ $-$ \times \div

\vee \wedge \sim

\times	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	4	6
3	0	3	6	9

\wedge	T	F
T	T	F
F	F	F

$$\begin{array}{c|cc} \wedge & T & F \\ \hline T & T & F \\ F & F & F \end{array}$$

$$\begin{array}{c|cc} \vee & T & F \\ \hline T & T & T \\ F & T & F \end{array}$$

$$\begin{array}{c||c} p & \sim p \\ \hline T & F \\ F & T \end{array}$$

$$\begin{array}{cc||c} p & q & p \wedge q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$

$$\begin{array}{cc||c} p & q & p \vee q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \end{array}$$

p	q	$p \wedge q$	$p \vee q$	$\sim p$
T	T	T	T	F
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T

Evaluate (to T or F) this logical expression:

$$(T \wedge (\sim F \vee F)) \wedge (T \wedge T)$$

Evaluate (to T or F) this logical expression:

$$(T \vee F) \wedge \sim(F \wedge T)$$

Evaluate (to T or F) this logical expression:

$$(F \vee F \vee T) \wedge (\sim T \wedge F)$$

p	q	$\sim p$	$\sim q$	$p \wedge q$	$\sim (p \wedge q)$	$\sim p \vee \sim q$
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	T	T

Commutativity

Addition $x + y = y + x$

Multiplication $x \cdot y = y \cdot x$

Associativity

Addition $(x + y) + z = x + (y + z)$

Multiplication $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Identity

Addition $x + 0 = x$

Multiplication $x \cdot 1 = x$

Universal bounds

Multiplication $x \cdot 0 = 0$

Commutativity	<i>Union</i>	$A \cup B = B \cup A$
	<i>Intersection</i>	$A \cap B = B \cap A$
	<i>Symmetric difference</i>	$A \oplus B = B \oplus A$
Associativity	<i>Union</i>	$(A \cup B) \cup C = A \cup (B \cup C)$
	<i>Intersection</i>	$(A \cap B) \cap C = A \cap (B \cap C)$
	<i>Symmetric difference</i>	$(A \oplus B) \oplus C = A \oplus (B \oplus C)$
Identity	<i>Union</i>	$A \cup \emptyset = A$
	<i>Intersection</i>	$A \cap \mathcal{U} = A$
Universal bounds	<i>Union</i>	$A \cup \mathcal{U} = \mathcal{U}$
	<i>Intersection</i>	$A \cap \emptyset = \emptyset$

Commutativity*Conjunction* $p \wedge q \equiv q \wedge p$ *Disjunction* $p \vee q \equiv q \vee p$ **Associativity***Conjunction* $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ *Disjunction* $(p \vee q) \vee r \equiv p \vee (q \vee r)$ **Identity***Conjunction* $p \wedge T \equiv p$ *Disjunction* $p \vee F \equiv p$ **Universal bounds***Conjunction* $p \wedge F \equiv F$ *Disjunction* $p \vee T \equiv T$

Commutativity:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associativity:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$
Distributivity:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
Absorption:	$p \wedge (p \vee q) \equiv p$	$p \vee (p \wedge q) \equiv p$
Idempotency:	$p \wedge p \equiv p$	$p \vee p \equiv p$
Double negation:	$\sim\sim p \equiv p$	
DeMorgan's:	$\sim(p \wedge q) \equiv \sim p \vee \sim q$	$\sim(p \vee q) \equiv \sim p \wedge \sim q$
Negation:	$p \vee \sim p \equiv T$	$p \wedge \sim p \equiv F$
Universal bounds:	$p \vee T \equiv T$	$p \wedge F \equiv F$
Identity:	$p \wedge T \equiv p$	$p \vee F \equiv p$
Tautology and contradiction:	$\sim T \equiv F$	$\sim F \equiv T$

Remember from high school algebra that there are “simplify” problems and “solve” problems.

■ Simplify $3x(2 + 3x)^2 + 1$.

$$\begin{aligned} & 3x(2 + 3x)^2 + 1 \\ &= 3x(4 + 12x + 9x^2) + 1 \\ &= 12x + 36x^2 + 27x^3 + 1 \\ &= 27x^3 + 36x^2 + 12x + 1 \end{aligned}$$

■ Solve $12x = 57 - 7x$ for x .

$$\begin{aligned} 12x &= 57 - 7x \\ 19x &= 57 \\ x &= 3 \end{aligned}$$

Suppose we were to show that $\sim(\sim p \wedge q) \vee (p \vee \sim p) \equiv p \vee \sim q$.

Do this:

$$\begin{aligned}\sim(\sim p \wedge q) \vee (p \wedge \sim p) & \\ \equiv \sim(\sim p \wedge q) \vee F & \text{ by negation law} \\ \equiv \sim(\sim p \wedge q) & \text{ by identity law} \\ \equiv p \vee \sim q & \text{ by De Morgan's}\end{aligned}$$

Don't do this:

$$\begin{aligned}\sim(\sim p \wedge q) \vee (p \wedge \sim p) & \equiv p \vee \sim q \\ \sim(\sim p \wedge q) \vee F & \equiv p \vee \sim q \text{ by negation law} \\ \sim(\sim p \wedge q) & \equiv p \vee \sim q \text{ by identity law} \\ p \vee \sim q & \equiv p \vee \sim q \text{ by De Morgan's}\end{aligned}$$

For next time:

Do Exercises 3.1.(19, 21, 25-29).

Read 3.1, if you haven't already

Read 3.2

Take quiz (covers both 3.1 and 3.2)