

Chapter 5 roadmap:

- ▶ Introduction to relations (last week Friday)
- ▶ Properties of relations (**Today** and Wednesday)
- ▶ Closures (Friday)
- ▶ Partial and total order relations (next week Monday)

“Today” (Monday and Wednesday):

- ▶ Review of definitions from last time
- ▶ Revisit proofs from last time
- ▶ Hints on homework problems
- ▶ Properties of relations
 - ▶ Reflexivity
 - ▶ Symmetry
 - ▶ Transitivity
- ▶ Proofs
- ▶ More proofs

Coming up:

Due Wednesday, Oct 29:

Do Exercises 5.2.(10,11) and 5.3.(2, 3, 4)

(You may “try again” on 5.2.(7 & 8))

See Canvas for hints/explanations.

Review Section 5.3 as necessary

Take quiz on Section 5.3

Due Friday, Oct 31:

Do Exercises 5.3.(21, 23, 24, 34, 36, 37)

Read Section 5.4

Take quiz on Section 5.4

Consider the set of students $\{\text{Alice, Bob, Carol, Dave}\}$. Suppose they all sit in the front row, with this seating arrangement:

Dave	Alice	Carol	Bob
------	-------	-------	-----

Consider the relation $sitsNextTo$ on this set. Determine which of the following are true.

$\text{Carol} \in sitsNextTo$

$(\text{Dave, Alice}) \in sitsNextTo$

$(\text{Dave, Bob}) \in sitsNextTo$

$(\text{Alice, Carol}) = sitsNextTo$

$sitsNextTo = \{\text{Dave, Alice, Carol, Bob }\}$

$sitsNextTo = \{(\text{Dave, Alice}), (\text{Alice, Carol}), (\text{Carol, Bob})\}.$

$sitsNextTo =$

$\{(\text{Alice, Carol}), (\text{Alice, Dave}), (\text{Bob, Carol}), (\text{Carol, Alice}), (\text{Carol, Bob}), (\text{Dave, Alice})\}$

A relation from one set to another	R	set of pairs	subset of $X \times Y$ $R \subseteq X \times Y$	isEnrolledIn, isTaughtBy
A relation on a set	R	set of pairs	subset of $X \times X$ $R \subseteq X \times X$	eats, divides
The image of an element under a relation	$\mathcal{I}_R(a)$	set	set of things that a is related to $\mathcal{I}_R(a) = \{b \in Y \mid (a, b) \in R\}$	classes Bob is enrolled in, numbers that 4 divides
The image of a set under a relation	$\mathcal{I}_R(A)$	set	set of things that things in A are related to $\mathcal{I}_R(A) = \{b \in Y \mid \exists a \in A \mid (a, b) \in R\}$	classes Bob, Larry, or Alice are taking, numbers that 2, 3, or 5 divide
The inverse of a relation	R^{-1}	relation	the arrows/pairs of R reversed $R^{-1} = \{(b, a) \in Y \times X \mid (a, b) \in R\}$	hasOnRoster, teaches, isEatenBy, isDivisibleBy
The composition of two relations	$S \circ R$	relation	two hops combined to one hop (Assume $S \subseteq Y \times Z$) $S \circ R = \{(a, c) \in X \times Z \mid \exists b \in Y \mid (a, b) \in R \wedge (b, c) \in S\}$	hasAsProfessor, eatsSomethingThatEats
The identity relation on a set	i_X	relation	everything is related only to itself $i_X = \{(x, x) \mid x \in X\}$	=

Theorem 5.1 If $a, b \in \mathbb{N}$ and $a|b$, then $\mathcal{I}_|(b) \subseteq \mathcal{I}_|(a)$.

Proof. Suppose $a, b \in \mathbb{N}$ and $a|b$. By definition of divides, there exists $i \in \mathbb{N}$ such that $a \cdot i = b$.

Suppose further that $c \in \mathcal{I}_|(b)$. By definition of image, $b|c$. By definition of divides, there exists $j \in \mathbb{N}$ such that $b \cdot j = c$.

By substitution, $a \cdot i \cdot j = c$, and so $a|c$ by definition of divides. By definition of image, $c \in \mathcal{I}_|(a)$, and by definition of subset, $\mathcal{I}_|(b) \subseteq \mathcal{I}_|(a)$. \square

Theorem 5.2 If R is a relation on a set A , $a \in A$, and $\mathcal{I}_R(a) \neq \emptyset$, then $a \in \mathcal{I}_{R^{-1}}(\mathcal{I}_R(a))$.

Proof. Suppose R is a relation on A , $a \in A$, and $\mathcal{I}_R(a) \neq \emptyset$.

Let $b \in \mathcal{I}_R(a)$. By definition of image, $(a, b) \in R$. By definition of inverse, $(b, a) \in R^{-1}$. By definition of image (extended for sets), $a \in \mathcal{I}_{R^{-1}}(\mathcal{I}_R(a))$. \square

Ex 5.2.7. Prove that if R is a relation on a set A and $(a, b) \in R$, then $\mathcal{I}_R(b) \subseteq \mathcal{I}_{R \circ R}(a)$.

Ex 5.2.8. Suppose R is a relation from a set X to a set Y and $A \subseteq X$. Is the following true?

$$\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) \subseteq A.$$

Prove or give a counterexample.

Ex 5.2.8. Suppose R is a relation from a set X to a set Y and $A \subseteq X$. Is the following true?

$$\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) \subseteq A.$$

Prove or give a counterexample.

Attempted proof. Suppose $x \in \mathcal{I}_{R^{-1}}(\mathcal{I}_R(A))$. [We want $x \in A$.]

By definition of image, there exists $y \in \mathcal{I}_R(A)$ such that $(y, x) \in R^{-1}$.

[From $y \in \mathcal{I}_R(A)$]

By definition of image, there exists $a \in A$ such that $(a, y) \in R$.

[From $(y, x) \in R^{-1}$]

By definition of relation inverse, $(x, y) \in R$

[We know $a \in A$, and both $(a, y) \in R$ and $(x, y) \in R$. Could it be that $a = x$?

Doesn't seem to be a way to prove that... I seem stuck]

Counterexample. Let $X = \{x, a\}$, $A = \{a\}$, and $Y = \{y\}$.

Let $R = \{(x, y), (a, y)\}$.

Then $R^{-1} = \{(y, x), (y, a)\}$, $\mathcal{I}_R(A) = \{y\}$, and $\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) = \{x, a\}$

In this example, $\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) \not\subseteq A$.

Ex 5.2.9. Prove that if R is a relation from A to B , then $i_B \circ R = R$.

Ex 5.2.9. Prove that if R is a relation from A to B , then $i_B \circ R = R$.

Proof. First suppose $(x, y) \in i_B \circ R$. By definition of composition, there exists $b \in B$ such that $(x, b) \in R$ and $(b, y) \in i_B$.

By definition of the identity relation, $b = y$. By substitution, $(x, y) \in R$. Hence $i_B \circ R \subseteq R$ by definition of subset.

Next suppose $(x, y) \in R$. By how R is defined, we know $x \in A$ and $y \in B$.

By definition of the identity relation, $(y, y) \in i_B$. By definition of composition, $(x, y) \in i_B \circ R$. Hence $R \subseteq i_B \circ R$.

Therefore, by definition of set equality, $i_B \circ R = R$. \square

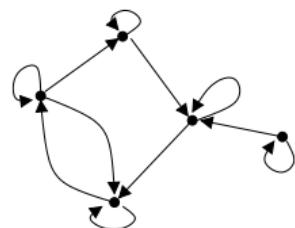
Ex 5.2.10. $(R^{-1})^{-1} = R$.

Ex 5.2.11. If R is a relation from A to B , is $R^{-1} \circ R = i_A$? Prove or give a counterexample.

Reflexivity

Informal Everything is related to itself

Formal $\forall x \in X, (x, x) \in R$

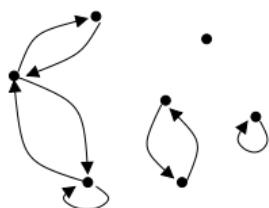


Visual

Symmetry

All pairs are mutual

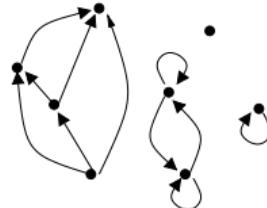
Formal $\forall x, y \in X, (x, y) \in R \rightarrow (y, x) \in R$
OR
 $\forall (x, y) \in R, (y, x) \in R$



Transitivity

Anything reachable by two hops is reachable by one hop

Formal $\forall x, y, z \in X, (x, y) \in R, (y, z) \in R \rightarrow (x, z) \in R$
OR
 $\forall (x, y), (y, z) \in R, (x, z) \in R$



Examples $\subseteq, \leq, \geq, \equiv, i$, isAquaintedWith, waterVerticallyAligned

\equiv , isOppositeOf, isOnSameRiver, isAquaintedWith

$<, \leq, >, \geq, \subseteq$, isTallerThan, isAncestorOf, isWestOf

	Reflexivity	Symmetry	Transitivity
Formal	$\forall x \in X, (x, x) \in R$	$\forall x, y \in X,$ $(x, y) \in R \rightarrow (y, x) \in R$ OR $\forall (x, y) \in R, (y, x) \in R$	$\forall x, y, z \in X,$ $(x, y), (y, z) \in R \rightarrow (x, z) \in R$ OR $\forall (x, y), (y, z) \in R, (x, z) \in R$
Analytical use	Suppose R is reflexive and $a \in X$. Then $(a, a) \in R$.	Suppose R is symmetric $[a, b \in X]$ and $(a, b) \in R$. Then $(b, a) \in R$	Suppose R is transitive $[a, b, c \in X]$ and $(a, b), (b, c) \in R$. Then $(a, c) \in R$.
Synthetic use	Suppose $a \in X$ $(a, a) \in R$. Hence R is reflexive.	Suppose $(a, b) \in R$ $(b, a) \in R$. Hence R is symmetric.	Suppose $(a, b), (b, c) \in R$ $(a, c) \in R$. Hence R is transitive.

Theorem 5.5. $|$ (divides) is reflexive.

Exercise 5.3.1. $|$ (divides) is not symmetric.

Theorem 5.6. $R \cap R^{-1}$ is symmetric.

Theorem 5.7. $|$ is transitive.

Exercise 5.3.19. $R^{-1} \circ R$ is reflexive. (False)

Exercise 5.3.20. If R and S are both reflexive, then $R \cap S$ is reflexive.

Exercise 5.3.22. If R and S are both symmetric, then $(S \circ R) \cup (R \circ S)$ is symmetric.

Based on Exercise 5.3.32. If R is transitive, then $R \circ R \subseteq R$.

Exercise 5.3.26. If R is transitive, $\mathcal{I}_R(\mathcal{I}_R(A)) \subseteq \mathcal{I}_R(A)$.

Exercise 5.3.31. If R is reflexive and

(for all $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$ then $(c, a) \in R$),
then R is an equivalence relation.

Coming up:

Due Wednesday, Oct 29:

Do Exercises 5.2.(10,11) and 5.3.(2, 3, 4)

(You may “try again” on 5.2.(7 & 8))

See Canvas for hints/explanations.

Review Section 5.3 as necessary

Take quiz on Section 5.3

Due Friday, Oct 31:

Do Exercises 5.3.(21, 23, 24, 34, 36, 37)

Read Section 5.4

Take quiz on Section 5.4