

Chapter 6 in context:

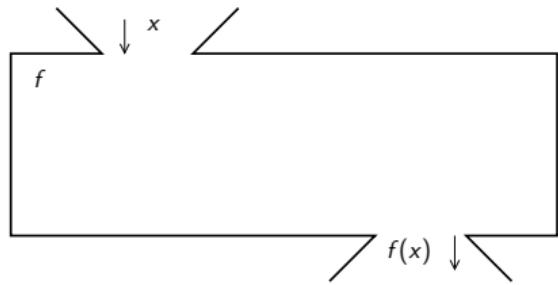
- ▶ Chapter 5 Relations: Builds on proofs about sets
- ▶ Chapter 6 Function: Builds on proofs about relations
- ▶ Chapter 7 Self Reference: Focuses on recursive thinking

Chapter 6 outline:

- ▶ Introduction, function equality, and dictionaries (**Today**)
- ▶ Image and inverse images (Friday)
- ▶ Function properties and composition (next week Monday)
- ▶ Reducing and pipelining (next week Wednesday)
- ▶ Cardinality (next week Friday)
- ▶ Countability (week-after Monday, Nov 17)
- ▶ Review (week-after Wednesday, Nov 19)
- ▶ Test 3, on Ch 5 & 6 (week-after Friday, Nov 21)

A function is...

- ▶ a parameterized expression.
- ▶ a named piece of code that can be invoked many times in different contexts.
- ▶ an extension to the programming language.
- ▶ an abstract machine.
- ▶ a *value*.



Cross out the term/concept that was **not** used in the reading for today as a way to think about functions

A kind of machine

A topological sort

A mapping between two collections

A kind of relation

For the function $f : X \rightarrow Y$, X is the _____ and Y is the

_____.

function

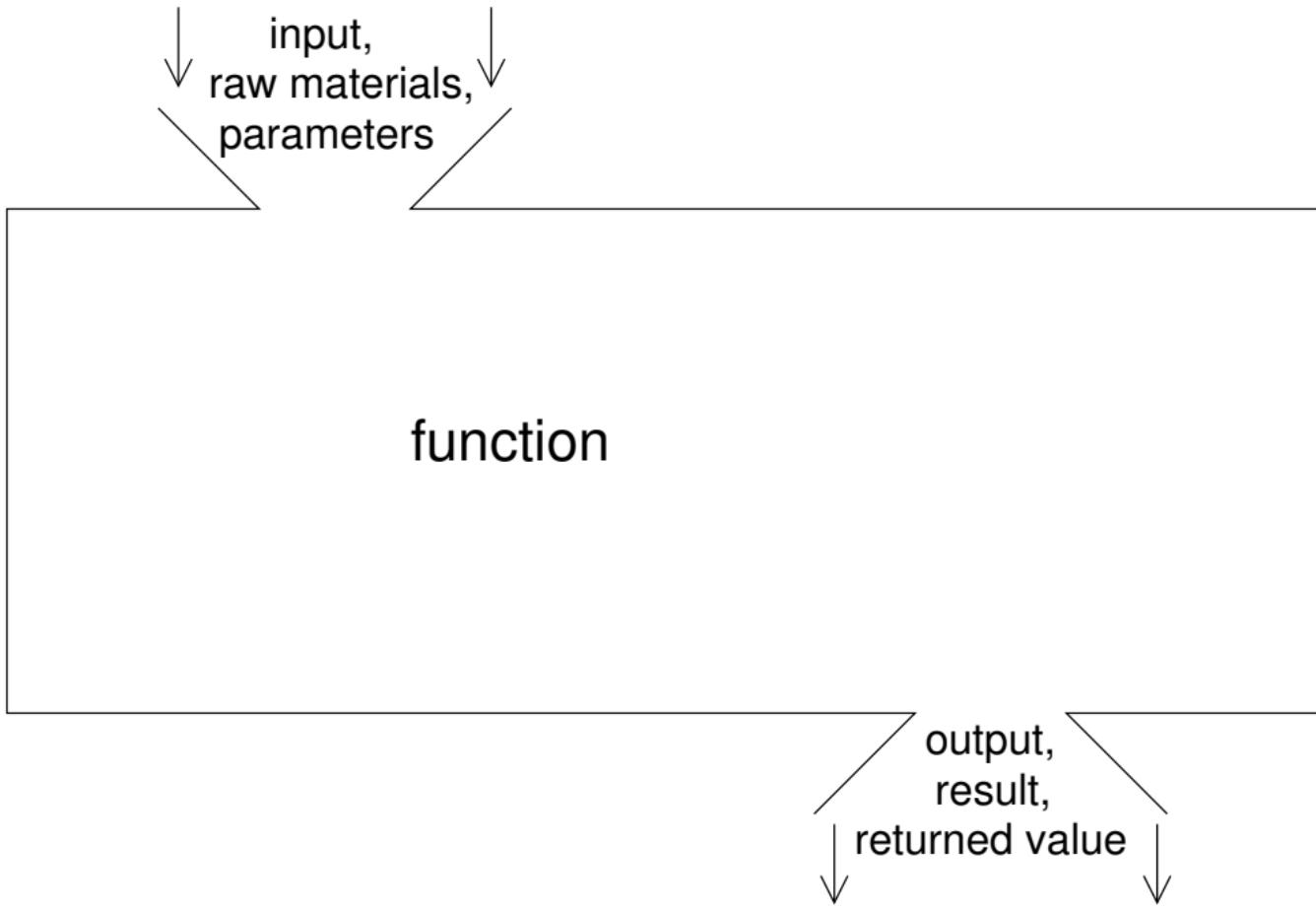
constant

domain

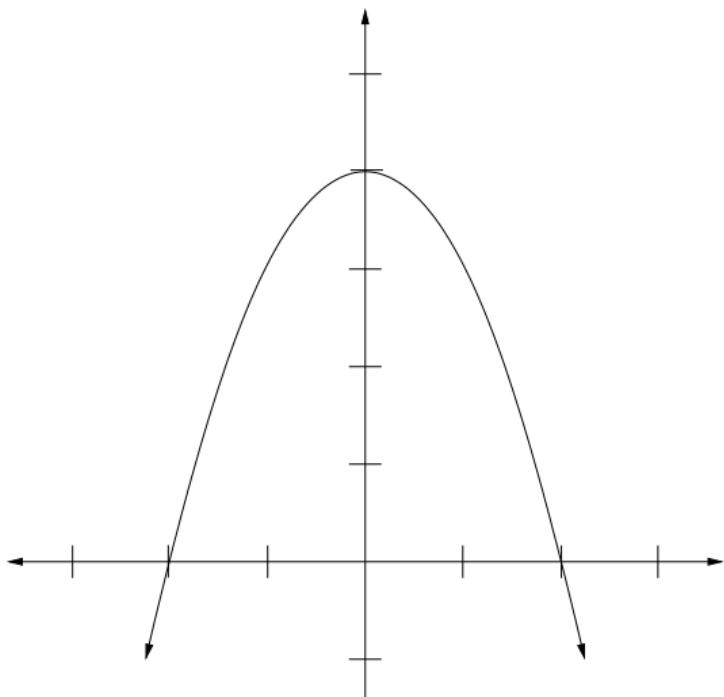
codomain

first-class value

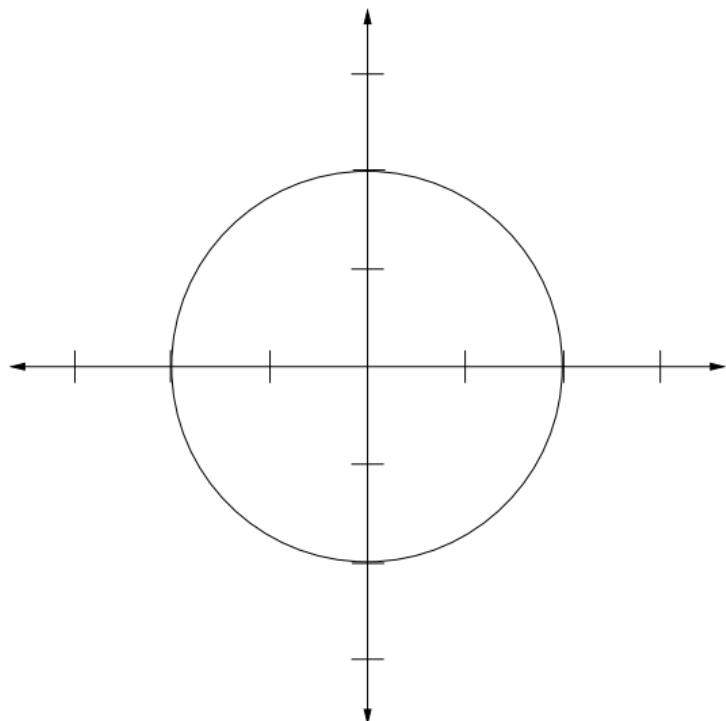
relation



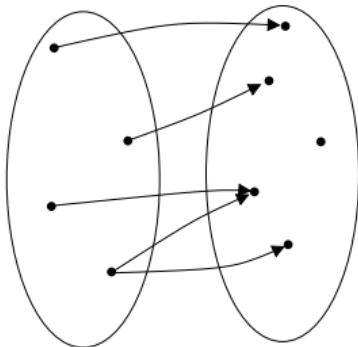
Alice	x3498
Bob	x4472
Carol	x5392
Dave	x9955
Eve	x2533
Fred	x9448
Georgia	x3684
Herb	x8401



$$y = 4 - x^2$$

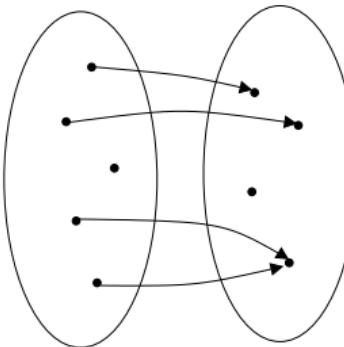


$$y^2 = 4 - x^2$$



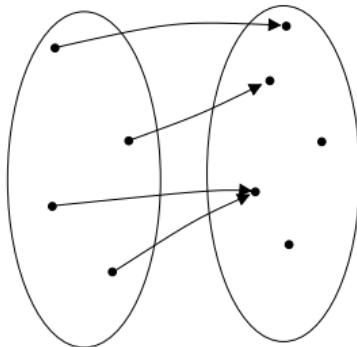
Not a function.

(There's a domain element that is related to two things.)



Not a function.

(There's a domain element that is not related to anything.)



A function.

(It's OK that two domain elements are related to the same thing and one codomain element has nothing related to it.)

Definition of function

Informal: A *function* is a relation in which everything in the first set is related to *exactly one thing* in the second set.

Formal: $f \subseteq X \times Y$ is a *function* if

$$\forall x \in X, \quad \exists y \in Y \mid (x, y) \in f \quad \text{existence of } y$$
$$\wedge \quad \forall y_1, y_2 \in Y, ((x, y_1), (x, y_2) \in f) \rightarrow y_1 = y_2 \quad \text{uniqueness of } y$$

Change of notation

Informal: A *function* is a relation in which everything in the first set is related to *exactly one thing* in the second set.

Formal (relation notation): $f \subseteq X \times Y$ is a *function* if

$$\forall x \in X, \quad \exists y \in Y \mid (x, y) \in f \quad \text{existence of } y$$

$$\wedge \quad \forall y_1, y_2 \in Y, ((x, y_1), (x, y_2) \in f) \rightarrow y_1 = y_2 \quad \text{uniqueness of } y$$

Formal (function notation): $f \subseteq X \times Y$ is a *function* if

$$\forall x \in X, \quad \exists y \in Y \mid f(x) = y \quad \text{existence of } y$$

$$\wedge \quad \forall y_1, y_2 \in Y, (f(x) = y_1 \wedge f(x) = y_2) \rightarrow y_1 = y_2 \quad \text{uniqueness of } y$$

We call X the *domain* and Y the *codomain* of f .

Definition of function equality. Let $f, g : X \rightarrow Y$

Old definition: functions are sets.

$$f = g \text{ if } \forall f \subseteq g \wedge g \subseteq f$$

New definition: based on function notation.

$$f = g \text{ if } \forall x \in X, f(x) = g(x)$$

Function equality: $f = g$ if $\forall x \in X, f(x) = g(x)$

Let $f, g : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) = x \cdot (x - 1) - 6$ and $g(x) = (x - 3)(x + 2)$.

Prove $f = g$.

The old and new definitions of function equality are equivalent.

Ex 6.1.1. $(\forall x \in X, f(x) = g(x)) \text{ iff } (f \subseteq g \wedge g \subseteq f).$

The old and new definitions of function equality are equivalent.

Ex 6.1.1. $(\forall x \in X, f(x) = g(x)) \text{ iff } (f \subseteq g \wedge g \subseteq f)$.

Proof. First, suppose $\forall x \in X, f(x) = g(x)$, that is, $f = g$ by definition of function equality. Further suppose $(x, y) \in f$. By function notation, $f(x) = y$. By supposition and substitution, $g(x) = y$. By relation notation, $(x, y) \in g$. Finally, $f \subseteq g$ by definition of subset.

Similarly $g \subseteq f$, and therefore $f = g$ by definition of set equality.

Conversely, suppose $f \subseteq g \wedge g \subseteq f$, that is, $f = g$ by definition of set equality. Further suppose $x \in X$.

Let $y = f(x)$. Note that this $y \in Y$ must exist by definition of function. By relation notation, $(x, y) \in f$.

By definition of subset [or set equality], $(x, y) \in g$. In function notation, that is $g(x) = y$, and so $f(x) = g(x)$ by substitution. Therefore $f = g$ by definition of function equality. \square

For next time:

*Do Exercises 6.1.(2,3,**7,8,9,10,11,12**).*

Exercises 2 and 3 are function-equality proofs. The other exercises are programming problems.

Read Section 6.2.

Take quiz