
CSCI 243
Test 1 review. Chapters 1 & 2. Test to be held on Wed, Sept 24

Recall that this course uses standards-based grading. This means that your progress in the course, as well as your
final grade, is measured by how many learning outcome standards you have met. The syllabus lists 21 standards.
The first test is comprised of questions to assess you on Standards 1–6. This review sheet summarizes the concepts
we have seen so far this semester and how those concepts align with standards that are assessed on this test.

Concepts Testable skills

1.1. Sets and elements; Z, W, N, Q, and R as standard
examples
1.2. Values, expressions, literals, types, operators.
The idea of a value in Python (or in computer mem-
ory) representing or modeling some real-world or ab-
stract/mathematical information. The types int, float,
bool, str, and type. Integer division and mod (// and %).
String operations—concatenation and multiplication (+
and *), len, and in.

Standard 4. Analyze the type of a Python expression.
(Similarly, be able to do a type analysis that involves
the kinds of Python expressions and the Python types
that occur in the subsequent sections.) The test will
include a section with approximately 6 expressions to
type-analyze.

1.3. Variables, identifiers, functions, parameters (actual
and formal), return value/statement, function applica-
tion. Functions as values that can be stored in variables
and passed to other functions.

Write simple Python functions. Write Python functions
that call other functions and that take functions as pa-
rameters. (This is assessed indirectly with Standards 5
and 6.)

1.4. Denoting sets by listing elements and using set-
builder notation. The set type in Python. Python set
comprehensions. Python ranges.

Standard 2. Describe a set using set-builder notation.
The test will include approximately 2 problems that ask
you two denote a set using set-builder notation.
Standard 5. Write Python functions that use set com-
prehensions and range. (See also below)

1.5. Set operations: union, intersection, difference,
symmetric difference, complement; subset, set equality.
The universal set and the empty set. Python set opera-
tors. The analogy between set operations and arithmetic
operations (on numbers).

Write Python functions that use set operators. (This is
assessed indirectly with Standards 5 and 6.)

1.6. Verifying propositions about the equality of set
expressions using Venn diagrams.

Standard 1. Verify set equality propositions using
Venn diagrams, shading, labeling, and accompanying
verbal explanations. The test will include approximately
2 problems asking you verify a set equality proposition
using Venn diagrams

1.7. Cardinality (modeled by len in Python), dis-
jointedness, pairwise disjointedness, partitions, Carte-
sian products, tuples.

Write Python functions that use tuples. (This is assessed
along with Standards 5 and 6

1.8. Powersets. Write Python functions that use sets of sets (which re-
quires frozen sets). (This is assessed along with Stan-
dard 5.)

2.1. Sequences, zero-based indexing. Python lists, sub-
scripting/indexing (with []). List comprehensions. List
concatenation and multiplication. Negative indexing
and slicing.

Standard 3. Write Python expressions using slicing,
negative indexing, etc. The test will include approxi-
mately 4 problems that ask you to write an expression
to index into a list or array (see also below).
Standard 5. Write Python functions that use list com-
prehensions, list operations, and various forms of sub-
scripting. (See also above.)

2.2. Recurrence relations. Recursive functions. Condi-
tional expressions and statements.

Standard 6. Write recursive Python functions. The
test will include approximately 2 problems that ask you
to write a recursive function. (See also below.)

2.3. Recursive processing of lists, such as splitting a list
as xx[0] and xx[1:].

Standard 6.Write recursive Python functions that pro-
cess lists. (See also above)

2.4. Python arrays (ndarray) from the NumPy (np)
package. Multidimensional subscripting/indexing. Ar-
rays as models of various mathematical ideas, including
vectors, matrices, and intervals.

Standard 3. Write Python expressions using multidi-
mensional indexing. (See also above.)

(See other side for important tips and clarifications.)



Tips: Make sure you label all expressions in a type analysis, including functions. You may use abbreviations
like i for int, b for bool, etc, as long as your abbreviation is unambiguous and legible—don’t use f ambiguously
for func and float or s ambiguously for set and str.

Make sure that Venn diagrams for verifying set propositions are as neat as reasonably possible, with the
parts of the expressions clearly labeled with their shading and with verbal explanations to indicate how the
entire set appears in the Venn diagram (for example, “only ,” “double-shaded”, “any shade”, etc).

Make sure you read the instructions carefully in the programming problems. They specify what algorithmic
approach or Python features you should use. Many problems could be solved either by a comprehension or
recursion (or other ways), but the instructions will indicate which approach you should take. You won’t
meet the standard if you give code that is correct but doesn’t conform to what the question is asking for.
Likewise, most Python features that we haven’t covered are out of bounds.

I intend to be lenient on minor syntactic mistakes in Python, but lenient and minor are defined at my
discretion. To be on the safe side, get the syntax right.

Test content organized by standards:

Standard 1. Verify set equality propositions using Venn diagrams, shading, labeling, and accompanying
verbal explanations. The test will include a section with approximately 2 problems asking you verify a
set equality proposition using Venn diagrams.

Standard 2. Describe a set using set-builder notation. The test will include a section with approximately
2 problems that ask you two denote a set using set-builder notation.

Standard 3. Write Python expressions using slicing, negative indexing, and (for arrays) multidimensional
indexing. The test will include a section with approximately 4 problems that ask you to write an
expression to index into a list or array.

Standard 4. Analyze the type of a Python expression. The test will include a section with approximately
6 expressions for you to type-analyze.

Standard 5. Write Python functions that use set and list comprehensions. The test will include a section
with approximately 2 problems that ask you to write a function that uses a set or list comprehension.

Standard 6. Write Python functions that use recursion. The test will include a section with approximately
2 problems that ask you to write a recursive function.


