This week (Chapter 2):
» Abstract data types (Today)
» Data structures “discovery lab” (Thursday)
» Data Structures (Friday and next week Monday)
» Programming practices (next week Monday)
» (Begin Case Studies next week Wednesday)

Today:
» Algorithmic elements (finishing Algorithms and Efficiency)
» Definition abstract data type, especially in contrast with data structure
> The “canonical” ADTs

» Introduction to conventions of our code base



Best case Worst case Expected case

Bounded linear search

Binary search

Quick sort



Algorithmic element 1

Can you jump directly to the thing you're looking for?

Algorithmic element 2

Are you descending a binary tree of the data?

Algorithmic element 3

Do you need to touch every element in the data?

Algorithmic element 4

For every element, do you need to descend a tree, or for every element in the tree, do
you touch every element?

Algorithmic element 5

For every element in the data, do you need to a suboperation on the rest of the data?

Algorithmic element 6

Do you need to consider all combinations of input elements?



An abstract data type (ADT) is a data type whose representation is hidden
from the client. Implementing an ADT as a Java class is not very different
from implementing a function library as a set of static methods. The primary
difference is that we associate data with the function implementations and
we hide the representation of the data from the client. When using an ADT,
we focus on the operations specified in the APl and pay no attention to the
data representation; when implementing an ADT, we focus on the data, then

implement operations on that data.
[Sedgewick and Wayne, Algorithms, Pg 64; also cf pg 84]



The “canonical ADTs":

List.
Stack.
Queue.
Set.
Bag.
Map.

Linear collection with sequential and random access.
Linear collection with LIFO access.

Linear collection with FIFO access.

Unordered collection with binary membership.
Unordered collection with enumerated membership.

Unordered collection of associations between keys and values.



List

Set

c
b
a

a o @ -

il
Il
- 1111

OR

Queue

Bag




Patricia

@ | 5 ®

Karin Joan Kristen

@DE h Eli b@ M i @
sther izabefl egan Linnea Chelsea
@) (6) D) (3

Annika Annaliese Raylee Emma
Pat‘ricia
®Ka‘rin @Jc‘)an Kris‘ten
(5) - e @ (®)

Esther Elizabeth Megan Linnea Chelsea

) \E) (3

Annika Annaliese Raylee Emma




Stack
LIFO
access

FIFO
access

Queue

Ordered

Random
access

List

Unordered
keys _ Set

Key-value Binary

associations membership

Lookup by index Lookup by key
ap

Any-type Enumerated

values membership

Whole-number Bagy
values



Stack

LIFO access

Lookup by index

List

we® Set

Binary membership

szsod\a“o“s
Lookup by key

Random access

Queue

FIFO access

Any Valye
Enumerated membershp

Whoj,
e\nu'”ber
vae Bag



The four basic ways to implement an ADT:

» Use an array

» Use a linked structure

» Use an “advanced” data structure, varying and/or hybridizing linked structures
and arrays

» Adapt an existing implementation of another ADT.



Coming up:

Due Wed, Sept 10:
Finish reading Section 2.1
Do Ex 1.11

Take ADT quiz

Due Mon, Sept 15:
Read Section 2.(2, 4, & 5)
Take data structures quiz

Also:
Do “Ilmplementing ADTs” project (Due Fri, Sept 19)



