
This week (Chapter 2):

▶ Abstract data types (Today)

▶ Data structures “discovery lab” (Thursday)

▶ Data Structures (Friday and next week Monday)

▶ Programming practices (next week Monday)

▶ (Begin Case Studies next week Wednesday)

Today:

▶ Algorithmic elements (finishing Algorithms and Efficiency)

▶ Definition abstract data type, especially in contrast with data structure

▶ The “canonical” ADTs

▶ Introduction to conventions of our code base



Best case Worst case Expected case

Bounded linear search

Binary search

Quick sort



Algorithmic element 1

Can you jump directly to the thing you’re looking for?

Algorithmic element 2

Are you descending a binary tree of the data?

Algorithmic element 3

Do you need to touch every element in the data?

Algorithmic element 4

For every element, do you need to descend a tree, or for every element in the tree, do
you touch every element?

Algorithmic element 5

For every element in the data, do you need to a suboperation on the rest of the data?

Algorithmic element 6

Do you need to consider all combinations of input elements?



An abstract data type (ADT) is a data type whose representation is hidden
from the client. Implementing an ADT as a Java class is not very different
from implementing a function library as a set of static methods. The primary
difference is that we associate data with the function implementations and
we hide the representation of the data from the client. When using an ADT,
we focus on the operations specified in the API and pay no attention to the
data representation; when implementing an ADT, we focus on the data, then
implement operations on that data.

[Sedgewick and Wayne, Algorithms, Pg 64; also cf pg 84]



The “canonical ADTs”:

List. Linear collection with sequential and random access.

Stack. Linear collection with LIFO access.

Queue. Linear collection with FIFO access.

Set. Unordered collection with binary membership.

Bag. Unordered collection with enumerated membership.

Map. Unordered collection of associations between keys and values.



a b c d e f g

0 5 61 2 3 4

a

b

c

d

e

g f

b c d e f

a

g

List Stack Queue

b

a
c

e
d

f

g

c

b

a

f

g

e

d

t

z

y

w

u

x

v

c

b

a

f

g

e

d

OR
b

a
c

e
d

f

gc
c

b

a

a

a

a

a
a a

a

f

f

f g

g

c

e e

e

e
e
e

e

e e

e

Set Map Bag



1

2

3

4

5

6

7

8

9

10

11

12

13
Annika Annaliese Raylee Emma

Esther Elizabeth Megan Linnea Chelsea

Karin Joan Kristen

Patricia

1

2

13

3 4

5 6 7 8 9

10 11 12

Annika Annaliese Raylee Emma

Esther Elizabeth Megan Linnea Chelsea

Karin Joan Kristen

Patricia



Map

Set

Bag

Unordered

Lookup by key

Enumerated

Whole−number

Keys

List

Stack

Queue

Ordered

Lookup by index

Binary
membership

membership

values

Key−value
associations

Any−type
values

Random
access

LIFO
access

FIFO
access



List

Stack
LIFO access

Queue

Random access

FIFO access

Map
Lookup by index Lookup by key

Whole−number value

Any value

Set

Bag

Items

Associations Binary membership

Enumerated membershp



The four basic ways to implement an ADT:

▶ Use an array

▶ Use a linked structure

▶ Use an “advanced” data structure, varying and/or hybridizing linked structures
and arrays

▶ Adapt an existing implementation of another ADT.



Coming up:

Due Wed, Sept 10:
Finish reading Section 2.1
Do Ex 1.11
Take ADT quiz

Due Mon, Sept 15:
Read Section 2.(2, 4, & 5)
Take data structures quiz

Also:
Do “Implementing ADTs” project (Due Fri, Sept 19)


