
This week and next week (Chapters 2 and 3):

▶ Abstract data types (Wed, Sept 10)

▶ Data Structures (Fri, Sept 12, & Mon, Sept 15)

▶ Linear time sorting (Sept 17–19, including lab)

Today:

▶ Recent HW problems

▶ Review: ADTs and data structure categories

▶ List vs array (including retrospective on ArrayList)
▶ Adapter pattern, including lab retrospective

▶ ListMap
▶ MapBag
▶ BagSet

▶ Abstractions

▶ Iterators (and other “programming practices”)



Coming up:

Do “Basic ADTs and data structures” project (due Fri, Sept 19)

Due Mon, Sept 15:
Read (or finish reading ) Section 2.(2, 4, & 5)
Take data structures quiz

Due Fri, Sept 19:
Read Section 3.1
Do Exercises 2.(22–24)
Take counting sort and radix sort quiz



def is_palindrome(str) :

palindromic = True

n = len(str)

i = 0

while palindromic and i < n // 2 :

palindromic = str[i] == str[n-i-1]

i += 1

return palindromic

Invariant (Loop of is palindrome)

1. ∀ j ∈ [0, i − 1), str[j ] = str[n − j − 1]

2. palindromic iff (i = 0 or str[i − 1] = str[n − i ])

3. i is the number of iterations completed



The “canonical ADTs”:

List. Linear collection with sequential and random access.

Stack. Linear collection with LIFO access.

Queue. Linear collection with FIFO access.

Set. Unordered collection with binary membership.

Bag. Unordered collection with enumerated membership.

Map. Unordered collection of associations between keys and values.



Map

Set

Bag

Unordered

Lookup by key

Enumerated

Whole−number

Keys

List

Stack

Queue

Ordered

Lookup by index

Binary
membership

membership

values

Key−value
associations

Any−type
values

Random
access

LIFO
access

FIFO
access



The four basic ways to implement an ADT:

▶ Use an array

▶ Use a linked structure

▶ Use an “advanced” data structure, varying and/or hybridizing linked structures
and arrays

▶ Adapt an existing implementation of another ADT.



enqueue(E)

front()

remove()

isEmpty()

internal.add(item);

<<interface>>

push(E)

top()

pop()

isEmpty()

Stack

− internal:List

ListQueue

enqueue(E)

front()

remove()

isEmpty()

− internal:List

ListStack

push(E)

top()

pop()

isEmpty()

<<interface>>

Queue

im
p
le

m
e
n
ts

im
p
le

m
e
n
ts

List
<<interface>>

add(E)

set(int,E)

remove(int)

insert(int,E)
size()

get(int)



Client

Adapter

operationA()

<<interface>>

Target

original

operationA()

original.operationB()

Original

operationB()



Bag

Queue

Stack

MapBag

ListBag

Map ListQueue

ArrayQueue

ListStack
ArrayStack

List

ArrayList

LinkedList

MapList

ListMap

ArrayMap

Set
MapSet

ListSet

BagSet



unused

frontback

14 3 8 17 11 2325 6

23

11

17

8

3 14

25

6



Abstract
data type

data structure

Simple

Abstract
data type

data structure

Simple

Abstraction

data structure

Advanced 

data structure

data structure

ADT

Array queue

abstraction

Array

Queue

Ring buffer



Why iterators?

▶ They provide a universal, consistent interface. (Abstraction)

▶ They do not expose the collection’s internal structure. (Encapsulation)

▶ They make great problems, exercising your understanding of a data structure, the
client code’s interaction with it, and how to process its contents. (Pedagogy)



Coming up:

Do “Basic ADTs and data structures” project (due Fri, Sept 19)

Due Mon, Sept 15:
Read (or finish reading ) Section 2.(2, 4, & 5)
Take data structures quiz

Due Fri, Sept 19:
Read Section 3.1
Do Exercises 2.(22–24)
Take counting sort and radix sort quiz


