Chapter 3, Case Studies:
» Linear-time sorting algorithms (last week Wednesday and Friday)
» Disjoint sets and array forests (Today)
» Priority queues and heaps (Wednesday and Friday)
» N-sets and bit vectors (Thursday lab)
» (Begin Graph unit in lab next week)

Today:
» Quiz solutions
> Problem statement
» Disjoint set ADT details
» The array forest abstraction and data structure
>

Find and union strategies, with optimizations

static Node arrayToListl(int[] array) {
Node toReturn = new Node(array[0], null);
for (int i = 1; i < array.length; i++) {

Node current

toReturn;

while (current.next() != null)

current =

C

urrent.next();

current.setNext (new Node(array[i], null));

}
return toReturn;

}

Node arrayToList2(int[] array) {
Node toReturn = null;

for (int i = array.length - 1; i >= 0; i--)

toReturn = new Node(array[i], toReturn);

return toReturn;

}

static int[] listToArray(Node head) {

int size = 0;

for (Node current = head; current != null;

sizet++;
int[] toReturn =
int i = 03
for (Node current
toReturn[i++]
return toReturn;

ne

w int[sizel;

head; current != null;
current.datum();

current

current

current.next())

current.next())

Problem statement:
Suppose we have a collection of items connected by an unknown equivalence

relation. Efficiently find the equivalence classes in this collection as information
about the relation is discovered.

Georgia— . Ralph

Trent
Carol / Olivia
Nate Ev /Karen \ Dave \ \Yvette
N
Ida—Jack Zeke AI|ce Queenie ‘
T Xavier Moira
VICk\Wendy Henry Fred Larry
Bob Pete ___—Sarah

Ursulla

= N0 =T o PR O B

a+b

d +c
e x g

The disjoint set ADT:
» Main operations: union two sets, find a set for a given element, and test if two

elements are in the same set.
» The universe is closed.
» We assume all elements can be indexed, [0, V).

> A set in the partition is identified by a leader.

Invariant (Class ArrayForestDisjointSet)
For all i € [0, n),

(a) leader(i) = leader(parents]i]), that is, parents][i] points to another element in
the same set as i.

(b) leader(i) = parents|leader(i)], that is, leaders all point to themselves.

(c) Following a finite number links implied by parents will converge, that is, there is
no circularity in the tree.

BruteForceDisjointSet

FindStrategy

find(int)

implements

PlainFind |

‘ CompressingFind

UnionStrategy

DisjointSet
find(int)
union(int, int)
connected(int,int)
count()
findAll(int)
5
a
E
ArrayForestDisjointSet

parents: int[]
finder: findStrategy
unioner: unionStrategy

find(int) o-
union(int, int) o-
connected(int,int)
count()

findAll(int)

finder.find(p);

union(int, int)

implements

‘ LazyUnion ‘

‘ AggressiveUnion ‘

WeightedUnion

unioner.union(p,q);

sizes: int[]

Union strategy LazyUnion
Find strategy =~ PlainFind

Find heavy: 1.30E7
(5.68E6)
Even mix: 9.89E7
(1.22E7)
Union heavy: 1.62E8

(1.26E7)

AggressiveUnion
PlainFind

3.34E7
(8.40E3)
4.41E7
(9.93E3)
4.39E7
(9.99E3)

WeightedUnion
PlainFind

7.40E5
(1.80E4)
1.20E6
(1.97E4)
1.40E6
(2.01E4)

LazyUnion
CompressingFind

9.26E5
(2.38E4)
1.56E6
(2.12E4)
1.71E6
(1.59E4)

WeightedUnion
CompressingFind

6.68E5
(9.34E3)
9.80E5
(9.96E3)
1.04E6
(1.00E4)

Coming up:
Do linear sorting project (Wed, Sept 24)

Due Today:
Finish reading Section 3.2 (disjoint sets and array forests)
Do Ex 2.(12 & 16) and 3.8 Take disjoint-sets quiz

Due Thurs, Sept 25:
Read Section 3.4

Do Exercises 3.(26 & 27).
Take N-sets quiz

Due Fri, Sept 26:

Read Section 3.3 (heaps and priority queues)
(no exercises)

Take heap/pq quiz

