
Chapter 3, Case Studies:

▶ Linear-time sorting algorithms (Wednesday and Friday (and Thursday))

▶ Disjoint sets and array forests (next week Monday)

▶ Priority queues (next week Wednesday and Friday)

▶ N-sets and bit vectors (next week Thursday)

Today (and Friday):

▶ Iterators in adapter data structures

▶ Recent quiz problem

▶ Intro to “case studies”

▶ Limitations of comparison-based sorting

▶ Counting sort

▶ (Lab: Bucket sort)

▶ Radix sort

ArrayList LinkedList

get()

set()

add()

Can’t you tell a good tree from a
poor tree?

I have just been thinking, and I have
come to a very important decision.
These are the wrong sort of bees.

Good sorts Bad sorts
Merge Selection

Quick (expected case) Insertion
Shell (unassigned project) Bubble

Heap (Section 3.3)

You can’t
comparison-sort
in linear time.
But there are
alternatives to
comparisons.

Meme from https://www.pinterest.com/pin/561542647262613858/

1 0 1 1 4 0 2 1 3 0 1 1 3 2 2 1 2 1 4 0 4 2 3 1 1 2 1 1 2 1 3 2 4 0 4

0. Alice 0

1. Bob 2

2. Carol 4

3. Dave 4

4. Eve 2

5. Fred 0

6. Georgia 0

7. Henry 1

8. Ida 4

9. Jack 2

10. Karen 4

11. Larry 0

12. Moira 2

13. Nate 3

14. Olivia 1

15. Pete 1

16. Queenie 1

17. Ralph 4

18. Sara 2

19. Trent 4

20. Ursulla 2

21. Vick 3

22. Wendy 1

23. Xavier 2

24. Yvette 0

25. Zeke 3

Coming up:

Do Implementing ADTs Project (due Fri, Sept 19)
Do Linear Sorting Project (due next Tues, Sept 10)

Due Fri, Sept 19:
Read Section 3.1
Do Exercises 2.(22–24)
Take sorting quiz

Due Mon, Sept 22:
Read Section 3.2
Do Exercises 2.(12 & 16) and 3.8.
Take disjoint sets quiz

Invariant (Loop of radix sort)

(a) i is the number of iterations completed.

(b) r pow = ri.

(c) ∀ k ∈ [0, n − 1), sequence[k] mod ri ≤ sequence[k + 1] mod ri

0110 1011 1100 0111 0001 1110 1001 1101

0110 1100 1110 1011 0111 0001 1001 1101

1100 0001 1001 1101 0110 1110 1011 0111

0001 1001 1011 1100 1101 0110 1110 0111

0001 0110 0111 1001 1011 1100 1101 1110

0110 1011 1100 0111 0001 1110 1001 1101

0110 1100 1110 1011 0111 0001 1001 1101

1100 0001 1001 1101 0110 1110 1011 0111

0001 1001 1011 1100 1101 0110 1110 0111

0001 0110 0111 1001 1011 1100 1101 1110

0110 1011 1100 0111 0001 1110 1001 1101

0110 1100 1110 1011 0111 0001 1001 1101

1100 0001 1001 1101 0110 1110 1011 0111

0001 1001 1011 1100 1101 0110 1110 0111

0001 0110 0111 1001 1011 1100 1101 1110

0110 1011 1100 0111 0001 1110 1001 1101

0110 1100 1110 1011 0111 0001 1001 1101

1100 0001 1001 1101 0110 1110 1011 0111

0001 1001 1011 1100 1101 0110 1110 0111

0001 0110 0111 1001 1011 1100 1101 1110

0110 1011 1100 0111 0001 1110 1001 1101

0110 1100 1110 1011 0111 0001 1001 1101

1100 0001 1001 1101 0110 1110 1011 0111

0001 1001 1011 1100 1101 0110 1110 0111

0001 0110 0111 1001 1011 1100 1101 1110

