
Chapter 3, Case Studies:

I Linear-time sorting algorithms (last week Wednesday and Friday)

I Disjoint sets and array forests (Monday)

I Priority queues (Wednesday and Friday)

I N-sets and bit vectors (Thursday in lab)

I (Start graphs next week Monday)

Today:

I Recent HW and quiz problems

I Worklist algorithms

I Priority queue ADT (problem statement)

I Inefficient solutions

I Abstractions for the heap data structure

I Heap implementation details, part 1

I Excursion: heap sort

I Heap implementation details, part 2

I Analysis and optimization

public class ArrayList<E>

implements List<E> {

private E[] internal;

private int size;

...

}

Informal: The positions of internal in range
[0, size) contain the elements in the concep-
tual list in order.
Formal:

(a) size ≤ internal.length

(b) size equals the number of calls to
insert() and add() minus the number
of (non-empty) calls to remove().

public class ArrayStack<E>

implements Stack<E> {

private E[] internal;

private int size;

...

}

Informal: size is the number of items in the
conceptual stack, which appear in order of ar-
rival in range [0, size)
Formal:

(a) size ≤ internal.length

(b) size equals the number of calls to
push() minus the number of
(non-empty) calls to pop().

(c) For all i ∈ [0, size− 1), the item in
internal[i] was pushed before the item
in internal[i + 1].

private class PlainFind implements FindStrategy {

public int find(int p) {

while (p != parents[p]) p = parents[p];

return p;

}

}

Let porig be the original value of p. Let i be the number of iterations completed.

(a) 0 ≤ p < N.

(b) leader(p) = leader(porig)

(c) p =

i times︷ ︸︸ ︷
parents[porig]

I An array forest is an example of what kind of data structure?
It contains both array-based and linked concepts.

I For each, is it best considered a data structure, abstraction, or abstract data type?
Array Data structure (simple)
Array Forest Data structures (hybrid/advanced)
Disjoint set Abstract data type
Forest Abstraction

I What design pattern was (explicitly) used in the implementation of disjoint sets?
Strategy

1

2

13

3 4

5 6 7 8 9

10 11 12

Annika Annaliese Raylee Emma

Esther Elizabeth Megan Linnea Chelsea

Karin Joan Kristen

Patricia

1

2

3

4

5

6

7

8

9

10

11

12

13

Annika Annaliese Raylee Emma

Esther Elizabeth Megan Linnea Chelsea

Karin Joan Kristen

Patricia

ListPriorityQueue SortedListPriorityQueue

Initialize empty Θ(1) Θ(1)

Initialize populated Θ(n) Θ(n2)

insert Θ(1) Θ(n)

max Θ(n) Θ(1)

extractMax Θ(n) Θ(1)

contains Θ(n) Θ(n)

increaseKey Θ(1) Θ(n)

decreaseKey Θ(1) Θ(n)

9

8 5

1427

3 6 0

9

8

45

7

36

1 0 2

9

86

4 3 5 7

021

3 6

7 2

8

9

5

4

0

1

3 6 0

7 2

8

9

5

4 1

9 8 5 7 2 4 31 6 0

21

17

514912

3 10 0

8

21

17

5149

3 10 0

12

8

21

17

5149

0

12

10

3 8

∑h−1
i=0 2i (h − 1 − i) = (h − 1)

∑h−1
i=0 2i −

∑h−1
i=0 i2i

= (h − 1)(2h − 1) − 2 − (h − 2)2h

= h2h − h − 2h + 1 − 2 − h2h + 2 · 2h

= 2h − h − 1

= 2lg(n+1) − lg(n + 1) − 1

= n + 1 − lg(n + 1) − 1

= n − lg(n + 1)

11 22 17 24 6 16 23 278 3

8

22

3 24 6

11

17

16 23 27

627 23 24 16 17 22 8 3 11

617

27

23 24

16 22

8 3 11

623 24 16 17 22 8 311 27

617

24

16 22

8 3 27

11

23

61716

8 3 27

23

24

22

11

623 16 17 8 3 2724 22 11

616

8 27

22

11

24

23

3

17

616 8 2722 11 2423 17 3

616

2724

3

17

23

11

8

22

616 272417 3 2322 11 8

2724

3

23

11

8 22

17

16

6

27242311 317 16 6 228

2724

3

23

11

226 17

8

16

27242311 36 2216 8 17

272423

226 17

8 3

11

16

2724236 228 1711 3 16

272423

2217

3

16

8

6

11

27242322173 168 6 11

272423

22171611

6

83

272423221716116 3 8

272423

22171611

8

3

6

2724232217161183 6

HeapPriorityQueue

internal: E[]

heapSize: int

compy: Comparator<E>

add(E)

decreaseKeyAt(int)

decrementHeapSize()

findKey(E)

get(int)

heapSize()

increaseKeyAt(int)

isEmpty()

isFull()

set(int, E)

swap(int, int)

Heap
isEmpty()
insert(E)
max()
extractMax()
contains(E)
increaseKey(E)
decreaseKey(E)

PriorityQueue
<<interface>>

im
p
le

m
e
n
ts

ListPriorityQueue SortedListPriorityQueue

ListPriorityQueue SortedPriorityQueue HeapPriorityQueue

Initialize empty Θ(1) Θ(1) Θ(1)

Initialize populated Θ(n) Θ(n2) Θ(n)

insert Θ(1) Θ(n) Θ(lg n)

max Θ(n) Θ(1) Θ(1)

extractMax Θ(n) Θ(1) Θ(lg n)

contains Θ(n) Θ(n) Θ(n)

increaseKey Θ(1) Θ(n) Θ(n)

decreaseKey Θ(1) Θ(n) Θ(n)

Coming up: (all end-of-day)

Do linear sorting project (due today, Wed, Sept 24)
Do heaps and priority queue project (Fri, Oct 3)

Due Thurs, Sept 25:
Read Section 3.4 (N-sets and bit vectors)
Do Exercises 3.(26 & 27).
Take N-sets quiz

Due Fri, Sept 26:
Read Section 3.3 (heaps and priority queues)
(no exercises)
Take heap/pq quiz

