Chapter 3, Case Studies:

>

>

v

v

v

Linear-time sorting algorithms (last week Wednesday and Friday)
Disjoint sets and array forests (Monday)

Priority queues (Wednesday and Friday)

N-sets and bit vectors (Thursday in lab)

(Start graphs next week Monday)

Today:
» Recent HW and quiz problems
» Worklist algorithms
» Priority queue ADT (problem statement)
> Inefficient solutions
» Abstractions for the heap data structure

v Vv

v

Heap implementation details, part 1
Excursion: heap sort
Heap implementation details, part 2

Analysis and optimization

public class ArrayList<E>
implements List<E> {
private E[] internal;
private int size;

public class ArrayStack<E>
implements Stack<E> {
private E[] internal;
private int size;

Informal: The positions of internal in range
[0, size) contain the elements in the concep-
tual list in order.

Formal:

(a) size < internal.length

(b) size equals the number of calls to
insert () and add() minus the number
of (non-empty) calls to remove ().

Informal: size is the number of items in the
conceptual stack, which appear in order of ar-
rival in range [0, size)

Formal:

(a) size < internal.length

(b) size equals the number of calls to
push () minus the number of
(non-empty) calls to pop().

(c) Forall i€ [0,size — 1), the item in
internal[i] was pushed before the item
in internalli + 1].

private class PlainFind implements FindStrategy {
public int find(int p) {
while (p != parents[p]) p = parents([p];
return p;

Let Porig be the original value of p. Let i be the number of iterations completed.
(a) 0<p<N.
(b) leader(p) = leader(

I times

Porig)

——N——
(c) p= parents[porig]

» An array forest is an example of what kind of data structure?
It contains both array-based and linked concepts.

» For each, is it best considered a data structure, abstraction, or abstract data type?
Array Data structure (simple)
Array Forest Data structures (hybrid/advanced)
Disjoint set Abstract data type
Forest Abstraction

» What design pattern was (explicitly) used in the implementation of disjoint sets?
Strategy

Patrlma

@\ 1@

Karln Joan Kristen
Esther EI|zabeth Megan Linnea Chelsea
Annika Annaliese Raylee Emma
Patricia
© | | |
Karin @Joan Kristen
Esther Elizabeth Megan Linnea Chelsea

®

Annika Annaliese Raylee Emma

ListPriorityQueue SortedListPriorityQueue

Initialize empty o(1) o(1)
Initialize populated ©(n) O(n?)
insert O(1) ©(n)
max O(n) o(1)
extractMax O(n) o(1)
contains ©(n) ©(n)
increaseKey (1) ©(n)

decreaseKey o(1) ©(n)

olsls72]a]r]a]e]o]

e@ 0@ O

o2(h—1-1) = (h—1)Xig2 — iy
= (h—1)("-1)—2—(h—2)2"
= mh—h-—2"41 -2 p20h 2.2k
= 2h_—h—-1
= 2slrtl) _g(n+1) -1
= n+1—lg(n+1)—-1

= n—lg(n+1)

’27 23‘24‘16‘17‘22‘ 6‘ 8‘ 3‘11‘

‘é @ ’ \23\ ‘16‘17‘11‘6‘ 8‘ 3

0O,
‘ . @ 23] 17] 22| 16| 3] 11| 6| 8[24] 27|

@ @ 22 17] 11] 16| 3| 8| 6]23]24] 27|

@ @ 117 16| 11] 6 | 3 | 8 [22] 23] 24] 27|

@ @ 16| 8| 11]6 |3 [17]22] 23] 24] 27|

@ @ 111] 8| 3|6 [16] 17] 22] 23] 24] 27|

@ @ 8] 6| 3] 11]16] 17] 22] 23] 24] 27|

@ @ 6| 3| 8] 11]16] 17] 22] 23] 24] 27|

PriorityQueue
<<interface>> Heap
;-,S,f;"n%() internal: E[]
max() heapSize: int
extractMax() compy: Comparator<E>
contains(E) add(E)
increaseKey(E) decreaseKeyAt(int)
decreaseKey(E) decrementHeapSize()
2 findKey(E)
g get(int)
g heapSize()
increaseKeyAt(int)
‘ ‘ ‘ isEmpty()
isFull()
‘ ListPriorityQueue ‘ ‘ SortedListPriorityQueue ‘ ‘HeapPrlorltyQueue % set(int, E)
swap(int, int)

ListPriorityQueue SortedPriorityQueue HeapPriorityQueue

Initialize empty o(1) o(1) o(1)
Initialize populated e(n) o(n?) e(n)
insert o(1) o(n) o(lgn)
max o(n) o(1) o(1)
extractMax o(n) o(1) o(lg n)
contains o(n) o(n) o(n)
increaseKey o(1) ©(n) O(n)

decreaseKey o(1) ©(n) ©(n)

Coming up: (all end-of-day)

Do linear sorting project (due today, Wed, Sept 24)
Do heaps and priority queue project (Fri, Oct 3)

Due Thurs, Sept 25:

Read Section 3.4 (N-sets and bit vectors)
Do Exercises 3.(26 & 27).

Take N-sets quiz

Due Fri, Sept 26:

Read Section 3.3 (heaps and priority queues)
(no exercises)

Take heap/pq quiz

