
Chapter 5, Dynamic Programming:

▶ Introduction (last week Wednesday)

▶ Principles of DP, including sample problems (last week Friday)

▶ DP algorithms, solutions to sample problems (Today)

▶ Review for Test 2 (Wednesday)

▶ Test 2 (Thursday, in lab)

▶ No class (Friday)

▶ Optimal BSTs (next week Monday)

Today:

▶ Recursive characterization and algorithm for Knapsack

▶ Recursive characterization and algorithm for Longest Common Subsequence

▶ Recursive characterization and algorithm for Matrix Multiplication



0-1 Knapsack.
Given a capacity c and the value and weight of n items in arrays V and W ,
find a subset of the n items whose total weight is less than or equal to the
capacity and whose total value is maximal.

V 20 15 90 100
W 1 2 4 5

0 1 2 3

c = 7

set weight value
{2, 3} 9 190 exceeds capacity
{1, 3} 7 115 not optimal
{0, 1, 2} 7 125 optimal



Knapsack
Let B[i ][j ] be the value of the best way to fill remaining knapsack capacity i using only
items 0 through j . Then B[c][n− 1] is the value-solution to the entire problem, that is,

B[c][n − 1] = max
K

n−1∑
j=0

W [j ]V [j ]

In the general case we have the choice between

V [j ]︸︷︷︸
value of
the jth
item

+B[i −W [j ]︸ ︷︷ ︸
remaining
capacity
after

taking the
jth item

][j − 1]

︸ ︷︷ ︸
The best way to
fill the remaining
capacity with the
remaining items

versus B[i ][j − 1]︸ ︷︷ ︸
The best way to
fill the unchanged
capacity with the
remaing items



Knapsack

B[i ][j ] =



0 if j = 0 and W [0] > i (0th doesn’t fit)

V [0] if j = 0 and W [0] ≤ i (0th fits)

B [i ] [j − 1] if W [j ] > i (jth doesn’t fit)

max


V [j ] + B [i −W [j ]] [j − 1] ,

B [i ] [j − 1]

 otherwise (j fits)



Problem:

item 0 1 2 3 4
weight 1 11 6 5 4
value 150 990 70 50 40

4 0/S 150/S 150/S 150/S 150/S 190/T 200/S 220/S 220/S 220/S 240/T
3 0/S 150/S 150/S 150/S 150/S 150/S 200/T 220/S 220/S 220/S 220/S
2 0/S 150/S 150/S 150/S 150/S 150/S 150/S 220/T 220/T 220/T 220/T
1 0/S 150/S 150/S 150/S 150/S 150/S 150/S 150/S 150/S 150/S 150/S
0 0/S 150/T 150/T 150/T 150/T 150/T 150/T 150/T 150/T 150/T 150/T

0 1 2 3 4 5 6 7 8 9 10
capacities



Longest common subsequence.
Given two sequences, find the longest subsequence that they have in common.

D A T A S T R U C T U R E S
A L G O R I T M S

A A A A A B
A B A A A A

not
A A A A A B
A B A A A A

A A A A A B A A A A
A B A A A A

not
A A A A A B A A A A
A B A A A A



Longest common subsequence
Let L[i ][j ] be the length of the longest common subsequence of a[: i ] and b[: j ]. Then
L[n][m] is the top-level problem.

L[i ][j ] =



0 if i = 0 or j = 0 (At least one prefix is empty)

1 + L[i − 1][j − 1] if i ̸= 0 and j ̸= 0 (Last symbols match—take it)
and a[i − 1] = b[j − 1]

max{L[i ][j − 1], (Last symbols don’t match—
L[i − 1][j ]} otherwise skip one)



For subsequences algorithms and datastructures, the table would be:

s 10 0 0/1 1/1 2/1 2/1 3/0 3/-1 3/-1 3/-1 3/-1 3/1 3/1 3/1 3/1 4/0
m 9 0 0/1 1/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 3/1 3/1 3/1 3/1 3/1
h 8 0 0/1 1/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 3/1 3/1 3/1 3/1 3/1
t 7 0 0/1 1/1 2/0 2/-1 2/-1 2/0 2/1 2/1 2/1 3/0 3/-1 3/-1 3/-1 3/-1
i 6 0 0/1 1/1 1/1 1/1 1/1 1/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
r 5 0 0/1 1/1 1/1 1/1 1/1 1/1 2/0 2/-1 2/-1 2/-1 2/-1 2/0 2/-1 2/-1
o 4 0 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
g 3 0 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
l 2 0 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
a 1 0 0/1 1/0 1/-1 1/0 1/-1 1/-1 1/-1 1/-1 1/-1 1/-1 1/-1 1/-1 1/-1 1/-1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d a t a s t r u c t u r e s



Matrix multiplication.
Given n + 1 dimensions of n matrices to be multiplied, find the optimal order
in which to multiply the matrices, that is, find the parenthesization of the
matrices that will minimize the number of scalar multiplications.

Assume the following matrices and dimensions: A, 3× 5; B, 5× 10; C , 10× 2,
D, 2× 3; E , 3× 4.

(A× B)× (C × (D × E )) 3 · 5 · 10 + 2 · 3 · 4 + 10 · 2 · 4 + 3 · 10 · 4 = 374

(A× (B × C ))× (D × E ) 5 · 10 · 2 + 2 · 3 · 4 + 3 · 5 · 2 + 3 · 2 · 4 = 178

A× (B × (C × (D × E ))) 2 · 3 · 4 + 10 · 2 · 4 + 5 · 10 · 4 + 3 · 5 · 4 = 364



Matrix multiplication.(
2 8
5 7

)(
3 6
1 4

)
=

(
2 · 3 + 8 · 1 2 · 6 + 8 · 4
5 · 3 + 7 · 1 5 · 6 + 7 · 4

)
=

(
14 44
22 58

)

(
1 3 12
2 7 11

)4 10
8 6
9 5

 =

(
1 · 4 + 3 · 8 + 12 · 9 1 · 10 + 3 · 6 + 12 · 5
2 · 4 + 7 · 8 + 11 · 9 2 · 10 + 7 · 6 + 11 · 5

)
=

(
136 88
163 117

)

(
1 2 5
6 8 9

)3
7
4

 =

(
1 · 3 + 2 · 7 + 5 · 4
6 · 3 + 8 · 7 + 9 · 4

)
=

(
37
110

)



Matrix multiplication
Let M[i ][j ] be the least number of scalar multiplications needed to multiply
submatrices Ai through Aj , inclusive. Then M[0][n − 1] is the top-level problem.

M[i ][j ] =


0 if i = j (Only one matrix)

mini≤k<j{M[i ][k]+ (Find the best way
D[i ]D[k + 1]D[j + 1]+ otherwise to cut this series)
M[k + 1][j ]}

Close-up of the recursive case:

M[i ][k]︸ ︷︷ ︸
minimum
multiplica-
tions for
(Ai · · ·Ak)

+D[i ]D[k + 1]D[j + 1]︸ ︷︷ ︸
multiplications for

(Ai · · ·Ak)(Ak+1 · · ·Aj)

+ M[k + 1][j ]︸ ︷︷ ︸
minimum
multiplica-
tions for

(Ak+1 · · ·Aj)



Which subproblems does subproblem M[3][7] depend on?
For k ranging over [3, 7):

k 3 4 5 6
subproblems (M[3][3],M[4][7]) (M[3][4],M[5][7]) (M[3][5],M[6][7]) (M[3][6],M[7][7])

8
7 3 4 5 6
6 6
5 5
4 4
3 3
2
1
0

0 1 2 3 4 5 6 7 8



M[i ][j ] =


0 if i = j (Only one matrix)

mini≤k<j{M[i ][k]+ (Find the best way
D[i ]D[k + 1]D[j + 1]+ otherwise to cut this series)
M[k + 1][j ]}

Problem: D = [10, 8, 4, 7, 3, 6, 9, 5]

597/3 582/3

558/3 600/3

402/3 324/3 420/0

156/3 180/1 600/1

126/3 84/2

0 0 0 0 0 0 0

0

1

2

3

4

5

6

6

354/3

162/4 224/1 320/0270/5

297/5 351/3

441/3

867/3

i j
5

4

3

2

1

0



Cell indices (i , j)
Base cases (0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6)

(0,1), (1,2), (2,3), (3,4), (4,5), (5,6)
(0,2), (1,3), (2,4), (3,5), (4,6)
(0,3), (1,4), (2,5), (3,6)
(0,4), (1,5), (2,6)
(0,5), (1,6)

Top-level problem (0,6)

Problem: D = [10, 8, 4, 7, 3, 6, 9, 5]
597/3 582/3

558/3 600/3

402/3 324/3 420/0

156/3 180/1 600/1

126/3 84/2

0 0 0 0 0 0 0

0

1

2

3

4

5

6

6

354/3

162/4 224/1 320/0270/5

297/5 351/3

441/3

867/3

i j
5

4

3

2

1

0



Coming up:

Catch up on projects. . .

Due Mon, Nov 10
Read Section 6.4
Take quiz (DP algorithms)

(See Canvas for practice problems for Test 2)


