Chapter 5, Dynamic Programming:

>

vVvvyVYyYVYyy

Introduction (Wednesday)

Principles of DP, including sample problems (Today)

DP algorithms, solutions to sample problems (next week Monday)
Review for Test 2 (next week Wednesday)

Test 2 (next week Thursday, in lab)

No class (next week Friday)

Optimal BSTs (week-after Monday)

Today:

>

>
>

>

>

Memoization HW problems

Lab retrospective
Introduction of three problems
» (-1 Knapsack
» Longest common subsequence
» Matrix multiplication
Elements of dynamic programming
» Optimization problems
» Optimal substructure
» Dynamic programming algorithms
Solution to the knapsack problem (time permitting)

Ex 6.5. Explain why this function can’t use memoization:

idgen = -1

def make_unique_id(name)
global allows us to modify tdgen inside this function
global idgen
idgen += 1
return name + str(idgen)

Ex 6.6. Explain why this function can’t use memoization:

def pick_at_random(seq)
return seq[random.randint(0, len(seq)-1)]

Ex. 6.7. Explain why this function can't use memoization:
f = open('data', 'r')

def next_n_lines(n)
lines = "'
for i in range(n)
lines += f.readline()
return lines

Dynamic programming. An algorithmic technique, often applied to optimization
problems, in which the inefficiency of overlapping subproblems is avoided
by memoization.

Memoization. An algorithmic technique where results of functions or subproblems are
stored for later retrieval.

Optimization. A category of algorithmic problem in which one needs to construct an
object to minimize a cost or maximize a value.

Overlapping subproblems. When a recursion tree for a formula contains multiple
instances of the same subproblem

Recursive characterization. A formula that relates problems to subproblems of the
same kind.

0-1 Knapsack.

Given a capacity ¢ and the value and weight of n items in arrays V and W,

find a subset of the n items whose total weight is less than or equal to the
capacity and whose total value is maximal.

20 | 15 | 90 | 100

%4
Wi1l|2) 4 5

o 1 2 3

set weight value
{2,3} 9 190 exceeds capacity
{1,3} 7 115 not optimal

{0,1,2} 7 125 optimal

Longest common subsequence.
Given two sequences, find the longest subsequence that they have in common.

D A
A L

T
G

A
)

S T
R |

> >

> W

< C

R
T

not

> >
W >
> >

A A A A

> >

not

> W

w >

Cc T URE S
S

A A A A

> >
> >
> >
> W

Matrix multiplication.

2 8\ (3 6\ (2:3+8-1 2-6+8-4) (14 44

5 7)\1 4) \5:3+7-1 5.647-4) \22 58

41
1 3 12) (g o) _(1-4+3-8+12:9 1-1043.6+12-5) _ (136 83
2 7 11) \y o) \2:447-8+11-9 2.10+7-6+11-5) \163 117

_(1-342.7+5-4\ (37
“\6-3+8-7+9-4) \110

N W

Matrix multiplication.
Given n + 1 dimensions of of n matrices to be multiplied, find the optimal
order in which to multiply the matrices, that is, find the parenthesization of
the matrices that will minimize the number of scalar multiplications.

Assume the following matrices and dimensions: A,3 x 5; B,5 x 10; C,10 x 2,
D,2 x3; E,3 x 4.

(A x B) x (C x (D x E)) 3.5.10+2-3-4+410-2-4+3.10-4 = 374

(Ax (B x C))x(DxE) 5.10-2+2-3-4+3-5-2+3-2-4 = 178

Ax (B x (Cx (D xE))) 2:3-4+10-2-4+5-10-4+3-5-4 = 364

Problem

Coin-changing

Knapsack

Longest common
subsequence

Matrix multiplication

Optimal BST

Thing to find

A bag of coins.

A set of objects

A subsequence in each

of two given sequences.

A way to parenthesize
the the matrices being
multiplied.

A BST for a given set
of keys

Optimization

Minimize the number of coins.

Maximize the sum of the
objects’ values.

Maximize the length of the
subsequences.
Minimize the number of scalar

multiplications required.

Minimize the expected length
of a search.

Constraint

The coins’ values sum to the
given amount.

The sum of the objects’
weights doesn't exceed the
given capacity.

The subsequences have the
same content.

The parenthesization is
complete and mathematically
coherent.

The tree satisfies the criteria
for a BST.

Progression of dynamic-programming problems:

1. Problem statement ... recognizing optimal substructure
2. Recursive characterization ... recognizing overlapping subproblems
3. Dynamic programming algorithm

Make a table for subproblems

Initialize base cases in the table

For all other subproblems / cells in the table

For each option in the decision for that subproblem
Lookup subsubproblem results and compare

Record best choice for that subproblem
Return minimum cost or maximum value for top-level problem

0-1 Knapsack.

Given a capacity ¢ and the value and weight of n items in arrays V and W,

find a subset of the n items whose total weight is less than or equal to the
capacity and whose total value is maximal.

20 | 15 | 90 | 100

%4
Wi1l|2) 4 5

o 1 2 3

set weight value
{2,3} 9 190 exceeds capacity
{1,3} 7 115 not optimal

{0,1,2} 7 125 optimal

Knapsack
Let BJi][j] be the value of the best way to fill remaining knapsack capacity i using only

items O through j. Then B[c][n — 1] is the value-solution to the entire problem, that is,

n—1
Blc]ln—1] = m,gxz KU1V
Jj=0

In the general case we have the choice between

V[j] +B[i— W[l — 1] versus Blil[j — 1]
~~ —— ——
value of remaining The best way to

fill the unchanged

the jth capacity
item after capacity with the
taking the remaing items
Jth item

The best way to
fill the remaining
capacity with the
remaining items

Knapsack

0 if j=0and WI[0] >/ (Oth doesn't fit)
V(0] if j=0and W[0] </ (Oth fits)
Blilli]=<¢ BIlilj—1] if W[jl>i (jth doesn't fit)

{ VIT+Bli = WL 1], }
max otherwise (J fits)
Bl —1]

Coming up:

Catch up on projects. ..
Do Traditional RB project (due Wed, Nov 5)
(Recommended: Do LL RB project for your own practice)

Due Mon, Nov 10—10:30 AM
Read Section 6.3

Do Exercises 6.(16, 19, 23, 33)
Take quiz (DP principles)

Due Tues, Nov 11)
Read Section 6.4
Take quiz (DP algorithms)

