
Chapter 6, Hash tables:

I General introduction; separate chaining (Today)

I Practice open addressing (Thursday lab)

I Open addressing (Friday)

I Hash functions (next week Monday)

I Perfect hashing (week-after Monday)

I Hash table wrap-up (week-after Wednesday)

Today:

I Finish optimal BSTs

I The story of the Map ADT

I Goals and terminology of the unit

I Separate chaining implementation

I Variables and metrics of performance



Find Search the data structure for a given key

Insert Add a new key to the data structure

Delete Get rid of a key and fix up the data structure

containsKey() Find

get() Find

put() Find + insert

remove() Find + delete



Find Insert Delete

Unsorted array Θ(n) Θ(1) [Θ(n)] Θ(n)

Sorted array Θ(lg n) Θ(n) Θ(n)

Linked list Θ(n) Θ(1) Θ(1)

Balanced BST Θ(lg n) Θ(1) [Θ(lg n)] Θ(1) [Θ(lg n)]

What we want Θ(1) Θ(1) Θ(1)



keykey

0

h1(k)

mod m

h(k)

0 m

number in [0,∞)

∞

h1(k)

number in [0,m)



Separate chaining: n
m < α where α > 1

key

Augustus

Tiberius

Caligula

Claudius

Nero

Galba

Otho Vitellius Vespasian

Titus

Domitian

Nerva

Trajan

Hadrian

Antoninus Pius

Marcus Aurleius Commodus

h(k)



Open addressing: n
m < α where α < 1

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I



Unit agenda:

I Solution 1: Separate chaining (plus basic concepts and terminology). (Today and
lab)

I Solution 2: Open addressing. (Friday)

I All about hash functions. (next week Monday)

I Solution 3: Perfect hashing. (week-after Monday)

I Looking carefully at performance. (week-after Wednesday)



Hash table terminology:

I Hash table: A data structure, not an ADT . . .

I Bucket: A position in the (main) array, or, abstractly, an index in the range [0,m).

I Hash function: A function from keys to buckets.

I Collision: When two keys are hashed to the same bucket.

I Chain: A sequence of keys that needs to be searched through to find a given key.

I Load factor (α): An upper bound on the ratio of keys to buckets.



Factors in best vs worst vs expected case:

I State of the table

I Length of the bucket

I Position of key in the bucket.

Parameters that can be adjusted for engineering a hash table:

I Load factor α

I Rehash strategy

I Hash function



O(1) c0
O(1) c0
O(1) c0

...
O(1) c0

rehash −→ O(n) c1 + c2n
O(1) c0

...
O(1) c0



T (n) = (n − 1)c0 + c1 + c2n
= (c0 + c2)n + c1 − c0
= Θ(n)



Hash functions should distribute the keys uniformly and independently.

Uniformity:

P(h(k) = i) =
1

m

Independence:

P(h(k1) = i) = P(h(k1) = i | h(k2) = j)



Coming up:

Do Optimal BST project (Due Mon, Nov 24)

Due Wed, Nov 19
Read Sections 7.(1 & 2)
Take quiz (actually due Thurs, Nov 20)

Due Fri, Nov 21
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz

Due Mon, Dec 1
Read Sections 7.(4 & 5) (No exercises or quiz)


