
Chapter 6, Hash tables:

▶ General introduction; separate chaining (Wednesday)

▶ Practice open addressing (Thursday lab)

▶ Open addressing (Today)

▶ Hash functions (next week Monday)

▶ Perfect hashing (week-after Monday)

▶ Hash table performance (week-after Wednesday)

Today:

▶ Review/finish hash table concepts

▶ Lab retrospective

▶ Basic idea and example of open addressing

▶ Terminology, code, and invariant

▶ Probing strategies

▶ Deletion



Hash table terminology:

▶ Hash table: A data structure, not an ADT . . .

▶ Bucket: A position in the (main) array, or, abstractly, an index in the range [0,m).

▶ Hash function: A function from keys to buckets.

▶ Collision: When two keys are hashed to the same bucket.

▶ Chain: A sequence of keys that needs to be searched through to find a given key.

▶ Load factor (α): An upper bound on the ratio of keys to buckets.



Factors in best vs worst vs expected case:

▶ State of the table

▶ Length of the bucket

▶ Position of key in the bucket.

Parameters that can be adjusted for engineering a hash table:

▶ Load factor α

▶ Rehash strategy

▶ Hash function



O(1) c0
O(1) c0
O(1) c0
...

O(1) c0
rehash −→ O(n) c1 + c2n

O(1) c0
...

O(1) c0



T (n) = (n − 1)c0 + c1 + c2n
= (c0 + c2)n + c1 − c0
= Θ(n)



Hash functions should distribute the keys uniformly and independently.

Uniformity:

P(h(k) = i) =
1

m

Independence:

P(h(k1) = i) = P(h(k1) = i | h(k2) = j)



0 1 2 3 4 5 6 7 8 9 10 11 12



Invariant (Class OpenAddressingHashMap)

1. The table it not full; there exists i ∈ [0,m) such that table[i ] = null.

2. There are no breaks in the chain for any key in the table; for all i ∈ [0,m) such
that table[i ] contains key k,

▶ if h(k) ≤ i , then for all j ∈ [h(k), i ], table[j ] ̸= null;

▶ if i < h(k), then for all j ∈ [0, i ] ∪ [h(k),m), table[j ] ̸= null.

k
h(k) m

k
h(k) m



D E G F B C J IA H

0 1 2 3 4 5 6 7 8 9 10

1 1 1 12 4 3 7 8 7



D G F B C J IA H

0 1 2 3 4 5 6 7 8 9 10



D G F B C J IA H

0 1 2 3 4 5 6 7 8 9 10



D G F B C J IA H

0 1 2 3 4 5 6 7 8 9 10

gap
ideal

pos



pos

ideal

D G F B C J IA H

0 1 2 3 4 5 6 7 8 9 10

gap



posgap

ideal

D G B C J IA H

0 1 2 3 4 5 6 7 8 9 10

F



posgap

ideal

D G B C J IA

0 1 2 3 4 5 6 7 8 9 10

F H



ideal

posgap

D G C J IA

0 1 2 3 4 5 6 7 8 9 10

F H B



gap pos

ideal

D G J IA

0 1 2 3 4 5 6 7 8 9 10

F H B C



gap pos

ideal

D G J IA

0 1 2 3 4 5 6 7 8 9 10

F H B C



D G JA

0 1 2 3 4 5 6 7 8 9 10

F H B C I
11 1 2 2 6 7 5 1



Cases to plug the gap Cases to skip the gap

i ≤ g < p

pluggap positionideal place

g < i ≤ p

skipgap ideal place position

p < i ≤ g

plugposition gapideal place

i ≤ p < g

skipideal place gapposition

g < p < i

pluggap ideal placeposition

p < g < i

skipgapposition ideal place

Invariant (Loop of optimized remove in linear probing.)

For all positions k ∈ (i , j), gap is the only position, if any, between its ideal place
(h(keys[k])) and its actual place (k).



Coming up:

Do Optimal BST project (Due Mon, Nov 24)
Do Open addressing with linear probing project (due Monday, Dec 1)

Due Fri, Nov 21 (end of day)
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz

Due Mon, Dec 1 (but recommended before break)
Read Sections 7.(4 & 5)
(No exercises or quiz)


