Chapter 5, Binary search trees:

» Binary search trees; the balanced BST problem (fall-break eve; finished last week
Friday)

AVL trees (last week Friday and this week Monday)
Traditional red-black trees (Wednesday, finish Today)
Left-leaning red-black trees (Today)

“Wrap-up” BST (next week Monday)

Begin dynamic programming (mext week Wednesday)

vVvyYyyvyy

Today:
» Lab retrospective
» Finishing Traditional RB
» LLRB context and definition
» LLRB invariant and cases
>

Performance comparison among AVL, TrRB, and LLRB



Why invariants?

» An invariant is a constraint we put on our code to help us guarantee something
about it.

» The general invariant for BSTs guarantees the correctness of our find algorithm.
» The invariants for AVL trees and RB trees guarantee logarithmic-time operations.

A stronger constraint is both a stronger constraint to maintain and a stronger
constraint to assume.



A left-leaning red-black tree is a binary tree (usually a BST) that is either empty or it
is rooted at node T such that

> T is either red or black.

Both of T's children are roots of left-leaning red-black trees.
T's right child is black.

If T is red, then its left child is black.

The left-leaning red-black trees rooted at its children have equal blackheight;
moreover, the blackheight of the tree rooted at T is one more that the
blackheight of its children if T is black or equal to that of its chidren if T is red.

>
>
>
>



Left-leaning °

Traditional a



Left-leaning

Traditional



Left-leaning

o
o

Traditional



Left-leaning

o
o

Traditional



Left-leaning

o
o

Traditional



Left-leaning

Traditional



Left-leaning

Traditional



Left-leaning

o
o

Traditional



Left-leaning

Traditional




Left-leaning

Traditional







Potential violations

Ignorant node
Inconsistent backheight shouldn't happen
Red null

Double red
fix when they happen

Right red




Invariant 28 (Postconditions of RealNode.put() with LLRBBalancer.) Let x be
the root of a subtree on which put () is called and let y be the node returned, that is,
the root of the resulting subtree.

(a) The subtree rooted at y has a consistent black height.

(b) The black height of subtree rooted at y is equal to the original black height of the
subtree rooted at x.

(c) The subtree rooted at y has no double-red violations except, possibly, both y and
its left child is red, which can happen only if x is a left child.

(d) The subtree rooted at y has no right-red violations.



redden B
AN blacken AandC AN
B Y 5



rotate left about A
EEE—
B gets A’s color

redden A



rotate right about C
redden A




Blackheight 1 2 3 4
Height 2 4 6 8
Nodes 2 6 14 30



Height: 3 Height: 14

Leaves: 8 Leaves: 1

Total depth: 34 0/ Total depth: 105
Height: 4

Leaves: 7

Total depth: 36

Height: 4 Height: 5
Leaves: 7 Leaves: 7
Total depth: 37 0/ Total depth: 38



Unbalanced

AVL

Traditional RB

Left-leaning RB

Height
32
31
30
28
32

16
15
15
15
15

16
16
16
16
16

18
19
18
18
19

After puts
Leaf % Total depth
33.3% 134507
33.2% 127865
33.1% 129037
33.5% 124463
33.4% 136730
43.2% 100327
42.9% 100395
42.8% 100341
42.8% 100282
43.0% 100582
42.8% 101948
42.9% 101226
43.1% 101525
42.7% 101680
42.9% 101292
42.8% 102288
42.9% 102860
43.1% 101949
42.7% 102011

42.9%

102552

Height
28
26
26
26
28

14
14
14
14
14

16
15
15
16
15

18
16
17
17
16

After removals

Leaf %
16.8%
17.0%
16.9%
17.3%
16.9%

21.5%
21.1%
21.1%
21.3%
21.2%

21.5%
21.4%
21.5%
21.5%
21.4%

21.6%
21.3%
21.5%
21.6%
21.4%

Total depth
61207
58171
58610
56086
62092

46088
46028
46028
45973
46097

46729
46344
46462
46572
46338

46950
46774
46691
46938
46764



