
Chapter 5, Binary search trees:

▶ Binary search trees; the balanced BST problem (fall-break eve; finished last week
Friday)

▶ AVL trees (last week Friday and this week Monday)

▶ Traditional red-black trees (Wednesday, finish Today)

▶ Left-leaning red-black trees (Today)

▶ “Wrap-up” BST (next week Monday)

▶ Begin dynamic programming (mext week Wednesday)

Today:

▶ Lab retrospective

▶ Finishing Traditional RB

▶ LLRB context and definition

▶ LLRB invariant and cases

▶ Performance comparison among AVL, TrRB, and LLRB



Why invariants?

▶ An invariant is a constraint we put on our code to help us guarantee something
about it.

▶ The general invariant for BSTs guarantees the correctness of our find algorithm.

▶ The invariants for AVL trees and RB trees guarantee logarithmic-time operations.

A stronger constraint is both a stronger constraint to maintain and a stronger
constraint to assume.



A left-leaning red-black tree is a binary tree (usually a BST) that is either empty or it
is rooted at node T such that

▶ T is either red or black.

▶ Both of T ’s children are roots of left-leaning red-black trees.

▶ T ’s right child is black.

▶ If T is red, then its left child is black.

▶ The left-leaning red-black trees rooted at its children have equal blackheight;
moreover, the blackheight of the tree rooted at T is one more that the
blackheight of its children if T is black or equal to that of its chidren if T is red.



Left-leaning
D

Traditional
D



Left-leaning
D

C

Traditional
D

C



Left-leaning
D

EC

Traditional
D

EC



Left-leaning

C

D

E

Traditional
D

EC



Left-leaning
D

EC

Traditional
D

EC



Left-leaning

C E

D

B

Traditional
D

C E

B



Left-leaning

C E

D

B

Traditional

C E

D

B



Left-leaning

C E

D

B

Traditional

C E

D

B



Left-leaning

C

D

B

E

A

Traditional

C

D

B

E

A



Left-leaning

E

D

A C

B

Traditional

E

D

A C

B



Left-leaning

A

B E

D

C

Traditional

E

D

B

CA



Potential violations


shouldn’t happen

Ignorant node

Inconsistent backheight

Red null

 fix when they happen
Double red

Right red



Invariant 28 (Postconditions of RealNode.put() with LLRBBalancer.) Let x be
the root of a subtree on which put() is called and let y be the node returned, that is,
the root of the resulting subtree.

(a) The subtree rooted at y has a consistent black height.

(b) The black height of subtree rooted at y is equal to the original black height of the
subtree rooted at x .

(c) The subtree rooted at y has no double-red violations except, possibly, both y and
its left child is red, which can happen only if x is a left child.

(d) The subtree rooted at y has no right-red violations.



α β γ δ

B

CAA

redden B

blacken A and C

α β γ δ

B

C



B gets A’s color

redden A

α

A

rotate left about A

α

B

γβ

A

γ

B

β



β γ δ

B

CA

α

C

B

γ

δ

rotate right about C

redden A

A

α β



Blackheight 1 2 3 4

Height 2 4 6 8
Nodes 2 6 14 30



Height: 3
Leaves: 8
Total depth: 34

Height: 14
Leaves: 1
Total depth: 105

Height: 4
Leaves: 7
Total depth: 36

Height: 4
Leaves: 7
Total depth: 37

Height: 5
Leaves: 7
Total depth: 38



After puts After removals
Height Leaf % Total depth Height Leaf % Total depth

Unbalanced 32 33.3% 134507 28 16.8% 61207
31 33.2% 127865 26 17.0% 58171
30 33.1% 129037 26 16.9% 58610
28 33.5% 124463 26 17.3% 56086
32 33.4% 136730 28 16.9% 62092

AVL 16 43.2% 100327 14 21.5% 46088
15 42.9% 100395 14 21.1% 46028
15 42.8% 100341 14 21.1% 46028
15 42.8% 100282 14 21.3% 45973
15 43.0% 100582 14 21.2% 46097

Traditional RB 16 42.8% 101948 16 21.5% 46729
16 42.9% 101226 15 21.4% 46344
16 43.1% 101525 15 21.5% 46462
16 42.7% 101680 16 21.5% 46572
16 42.9% 101292 15 21.4% 46338

Left-leaning RB 18 42.8% 102288 18 21.6% 46950
19 42.9% 102860 16 21.3% 46774
18 43.1% 101949 17 21.5% 46691
18 42.7% 102011 17 21.6% 46938
19 42.9% 102552 16 21.4% 46764


